Experimente der Kategorie "Elektrochemie"

NameKurzbeschreibungBeschreibungTypGefahrstoffe
Elektrolyse von Wasser (Microscale für Schülerübungen) Kanallgasproduktion in einer Einwegpipette Gemäß Beschreibung wird eine Einweg-Plastikpipette mit zwei Nadelelektroden ausgestattet. Ein Rggl. wird mit Natriumsulfat-Lösung befüllt. Man stellt die Pipette hinein, saugt wie angegeben die Flüssigkeit hoch und startet die Elekrolyse durch Anlegen einer 4,5V oder 9V-Gleichspannung aus einer Batterie. Wenn der Pipettenkopf mit Knallgas gefüllt ist, presst man es in eine Portion Wasser-Spülmittelgemisch in einer Porzellanschale und entzündet es. Lehrer-/ Schülerversuch Wasserstoff (freies Gas), Sauerstoff (freies Gas)
Ionenwanderung auf dem Objektträger Kaliumpermanganat- und ammoniakalische Kupfersalz-Lösung unter Gleichspannung Ein DC-Plattenstücks mit Aluminiumoxidoberfläche (alternativ: Objektträger-Filterpapier-Kombination) wird mit Kaliumnitrat-Lösung getränkt bzw. befeuchtet. Gemäß Beschreibung belegt man beide äußeren Seiten dieser Platte mit einer Bleistiftmine, an die über Kabel und Klemmen eine 25V-Gleichspannung angelegt wird. Ein Wollfaden wird mit Kaliumpermanganat-Lösung und mit einer ammoniakalischen Kupfer(II)-sulfat-Lösung getränkt und mittig zwischen den beiden Minen aufgelegt. Lehrer-/ Schülerversuch Kaliumpermanganat, Kupfer(II)-sulfat-Pentahydrat, Ammoniak-Lösung (konz. w=_____ % (10-25%))
Ionenwanderung im Doppel-U-Rohr Permangant- und Kupfertetrammin-Ionen im elektrischen Spannungsfeld Gemäß Anleitung befüllt man die äußeren Schenkel des Doppel-U-Rohres mit einer ammoniakalischen Ammoniumsulfat-Kochsalz-Lösung bzw. mit einer Ammoniumsulfat-Kochsalz-Lösung ohne Ammoniak-Zusatz. Die beiden farbigen Salzlösungen werden bereitet, zusammengegeben und wie beschrieben in den mittleren U-Rohrschenkel gefüllt. Man legt für mind. 20 min an die zwei Platinelektroden des Aufbaus eine 25-40V-Gleichspannung an. Lehrer-/ Schülerversuch Kaliumpermanganat, Kupfer(II)-sulfat-Pentahydrat, Ammoniak-Lösung (konz. w=_____ % (10-25%))
Ionenwanderung in der Petrischale Kupfer- und Permanganat-Ionen in Gelschicht Gemäß Anleitung bereitet man aus Agar-Agar, Kaliumnitrat und Wasser ein Gel, das in eine Petrischale gegossen wird. Wie beschrieben werden zwei Löcher in die Gelschicht gestanzt und an beiden Seiten der Schale zwei gelfreie Streifen. In diese gießt man etwas Kaliumnitrat-Lösung und legt jeweils eine Graphitelektrode hinein. In die beiden Löcher in der Mitte wird etwas Kupfersulfat-Lösung bzw. etwas Kaliumpermanganat-Lösung hineingetropft. Dann legt man eine 25V- -Gleichspannung an die beiden Elektroden und projeziert den Ablauf des Experiments mittels OHP. Lehrer-/ Schülerversuch Kaliumpermanganat-Lösung 0,1N (Maßlösung, c=0,1N), Kupfer(II)-sulfat-Lösung (verd., (w: <25%))
Synthese und Elektrolyse von Zinkiodid Zink/Iod-Zelle als galvanisches Element A In einem Becherglas wird gemäß Anleitung etwas klein geriebenes Iod in Wasser und Ethanol gelöst. Man setzt Zinkpulver hinzu und verrührt, bis die Lösung farblos geworden ist. B Man filtriert die Lösung und gibt sie in eine Petrischale, die in der Mitte durch einen Filterpapierstreifen (Ionenbrücke) geteilt ist. Auf beiden Seiten werden Elektroden in die Lösung gelegt. Mit einer geeigneten Batterie wird wie angegeben eine Gleichspannung angelegt und der Ladevorgang gestartet. C Nach einigen Minuten tauscht man die Gleichspannungsquelle gegen einen Verbraucher ( Motor .. LED) aus. Lehrer-/ Schülerversuch Zink (Pulver, nicht stabilisiert), Iod, Ethanol (ca. 96 %ig)
Zinkbaum in der Petrischale Elektrochemische Metallabscheidung Eine Petrischale wird mit Zinkiodid-Lösung gefüllt. Zwei Büroklammern werden wie beschrieben aufgebogen und als Elektroden links und rechts in die Lösung gebracht, wobei deren zwei Enden gemäß Anleitung und Skizze mit einer 4,5V-Fachbatterie verbunden werden. Lehrer-/ Schülerversuch Zinkiodid, Iod
Wasserzersetzung mit Medizintechnik Getrenntes Auffangen von Wasserstoff und Sauerstoff Gemäß Beschreibung und Skizze wird die Zersetzungsapparatur zusammengestellt: Zwei Kanülen werden durch Abschneiden der Spitzen entschärft und leicht gewickelt, so dass sie als Elektroden dienen können (alternativ: Platindraht). Aus zwei 20ml-Spritzen werden die Stempel entfernt. Eine weitere Spritze wird zur Gasentnahme bereitgehalten. Das Elektrolysegefäß wird wie angegeben mit angesäuertem Wasser gefüllt. Man stellt die Zersetzungsapparatur hinein und legt an die Elektroden mit Netzteil oder 9V-Batterie eine Gleichspannung an. Die bei der Elektrolyse gesammelten Gase werden einzeln in die dritte Spritze und dann in ein Rggl. überführt. Man macht mit Wasserstoff eine Knallgasprobe und mit Sauerstoff eine Glimmspanprobe. Lehrer-/ Schülerversuch Schwefelsäure (verd. w=____% (5-15%)), Sauerstoff (freies Gas), Wasserstoff (freies Gas)
Knallgas in der kleinen Ampullenflasche Elektrochemische Wasserzersetzung Gemäß Anleitung und Skizze wird die Ampullenflasche mit Natriumsulfat- oder -Carbonat-Lösung befüllt. Man setzt den Stopfen mit den Kanülen-Elektroden auf und montiert die kleine Ampullenflasche mit der Öffnung nach unten auf eine größere Ampullenflasche und klemmt wie beschrieben die Gleichspannungsquelle an. Man elektrolysiert mit 4,5V oder 9V bis das entstandene Knallgas die Lösung nach unten verdrängt hat. Dann hält man die kleine Ampullenflasche mit dem Knallgas an die Seite einer Teelichtflamme. Lehrer-/ Schülerversuch Wasserstoff (freies Gas), Sauerstoff (freies Gas)
Elektrolyse von Kupfer(II)-chlorid- und Zinkiodid-Lösungen Tropfenmaßstab: Arbeit auf dem Objektträger Man gibt gemäß Beschreibung eine. Tropfen Kupfer(II)-Chlorid-Lösung, alternativ Zinkiodid-Lösung, mittig auf einen Objektträger. Zwei Bleistiftminen dienen als Elektroden und ragen ein wenig auf beiden Seiten des Tropfens in die Flüssigkeit. Mit 4,5V wird elektrolysiert (Flachbatterie). Lehrer-/ Schülerversuch Kupfer(II)-chlorid-Dihydrat, Zinkiodid
Magnesium-Iod-Batterie // Zink-Iod-Batterie Elektrochemische Prozesse im Minimaßstab Eine Magnesium-Metallspitzer wird von der Stahlklinge befreit, alternativ ein kleines Stück Zinkblech wird wie beschrieben mit einer Krokodilklemme gehalten, die über ein Kabel mit einem Propellermotor verbunden ist. Man tränkt ein Filterpapierstück mit Konz. Kaliumnitrat-Lösung und legt es auf eine freie Stelle des Metalls. Nun zerdrückt man einen größeren Iodkristall auf dem Papier und drückt den Stecker des zweiten Kabels vom Motor direkt auf das Iod. Lehrer-/ Schülerversuch Iod
Batterie mit Phloroglucin in alkalischer Lösung Demonstration einer Redox-Flow-Batterie Gemäß Beschreibung und Skizze wird in einem Becherglas Phloroglucin in Natronlauge gelöst. Man stellt einen Tontopf hinein, der eine Lösung von Peroxodisulfat in Schwefelsäure enthält. Als Elektroden werden eine Kohlefolie in die Becherglas-Halbzelle sowie eine Kohleelektrode nach Oetken in die Tontopfhalbzelle gehängt. Sie werden mit Motor, Spannungs- und Stromstärke-Messgerät wie dargestellt verschaltet. Die Batterie wird mit einer Silber/Silberchlorid-Halbzelle verbunden, mit deren Hilfe die Potentiale der Halbzellen gemessen werden. Lehrer-/ Schülerversuch Natriumperoxodisulfat, Schwefelsäure (verd. w=____% (5-15%)), Natronlauge (Maßlösung c= 1 mol/L)
Batterie mit Protocatechusäure Demonstration einer Redox-Flow-Batterie Gemäß Beschreibung wird in einem Becherglas Protocatechussäure in Natronlauge gelöst. Man stellt einen Tontopf hinein, der eine Lösung von Peroxodisulfat in Schwefelsäure enthält. Als Elektroden werden eine Kohlefolie in die Becherglas-Halbzelle sowie eine Kohleelektrode nach Oetken in die Tontopfhalbzelle gehängt. Sie werden mit Motor, Spannungs- und Stromstärke-Messgerät wie dargestellt verschaltet. Die Batterie wird mit einer Silber/Silberchlorid-Halbzelle verbunden, mit deren Hilfe die Potentiale der Halbzellen gemessen werden. Lehrer-/ Schülerversuch Natronlauge (Maßlösung c= 1 mol/L), Schwefelsäure (verd. w=____% (5-15%))
Der Bau des Lithium-Ionen-Power-Packs Herstellung eines leistungsstarken Akkus mit Zinn als Anodenmaterial Wie in der Anleitung beschrieben und mit Skizzen und Abbildungen im Detail dargestellt wird das System aus zurecht geschnittenen Zinnfolien- und Graphitfolienstreifen auf einem lagen Filterpaierstreifen ziehharmonikaartig zusammengefaltet, so dass es in die vorgesehene Dose passt. Der Dosendeckel mit den zwei Polen wird gemäß Beschreibung präpariert. Man befüllt mit der Elektrolytlösung, die durch Einrühren von Lithiumperchlorat in ein Gemisches aus Propylencarbonat und Dimethylcarbonat angesetzt wird. Nach der Befüllung wird der Akku wie beschrieben aufgeladen und als Spannungsquelle benutzt. Lehrer-/ Schülerversuch Lithiumperchlorat, Propylencarbonat, Dimethylcarbonat
Spannungsreihe der Metalle Arbeit auf der Zellkulturplatte Gemäß Anleitung befüllt man fünf Kammern der Platte jeweils mit einer der metallsalz-Lösungen, die sechste in der Mitte mit Kaliumnitrat-Lösung. Durch Einlegen der Metallstreifen in die jeweilige Salzlösung bereitet man die Halbzellen vor. Von jeder Halbzelle führt ein mit Kaliumnitrat-Lösung getränktes Kerzendochtstück in die zentrale Kaliumnitrat-Mulde. Nun misst man mit einem Digitalmultimeter wie beschrieben die zwischen den fünf Halbzellen anliegenden Spannungen. Lehrer-/ Schülerversuch Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Eisen(II)-sulfat-Heptahydrat, Silbernitrat-Lösung (verdünnt, w=____% (<5%))
Spannungsreihe der Nichtmetalle Redoxpotential-Messung mit Bromid und Iodid Gemäß angegebenem Schema befüllt man drei Vertiefungen einer Zellkulturplatte mit Kaliumiodid-Lösung, mit Kaliumchlorid-Lösung und mit Bromwasser. Ein Dochtstück oder Filterpapierstreifen wird als Salzbrücke zwischen den Mulden eingelegt. Mittels Bleistiftminen als Grafitelektroden misst man mit einem Digitalmultimeter die Spannung zwischen der Brom- und der Iod-Halbzelle. Lehrer-/ Schülerversuch Bromwasser (verd. (w: 1-5%))
Standardpotential bei Zink und bei Kupfer Messung in einer dreiteiligen Petrischale Die Kammern der Petrischale werden 1) mit 1-molarer Kupfersulfat-Lösung, 2) mit 1-molarer Zinksulfat-Lösung sowie 3) mit 1-molarer Salzsäure befüllt. Ein Stück Magnesiumband sorgt in der Salzsäure für stetige Wasserstoffentwicklung. Als Elektrode der Wasserstoffhalbzelle wird eine Platindraht, bei der Kupferhalbzelle ein Stück Kupferdraht und bei der Zinkhalbzelle ein Zinkdraht eingelegt. Mit Kaliumnitrat-Lösung getränkte Dochtstücke oder Filterpapierstreifen werden als Salzbrücke benutzt. Mit einem Digitalmultimeter misst man die jeweiligen Spannungen gegenüber der Wasserstoffelektrode. Lehrer-/ Schülerversuch Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Salzsäure (Maßlösung c= 1 mol/L)
Getränkedosen-Batterie / CD-ROM-Batterie Aluminium-Luft-Zelle Eine Getränkedose wird auf 2/3 ihrer Höhe mit der Schere gekürzt. Man schmirgelt die Innenseite und den Ansatz für die Krokodilklemme auf der Außenseite mit Schleifpapier an. Die Dose wird mit Kochsalz-Lösung, der etwas Phenolphthalein-Lösung beigegeben wurde, gefüllt. Mittels Stativ wird eine Graphitelektrode in die Lösung getaucht, ohne das Dosenmetall zu berühren. Über diesen Graphitstab und eine Krokodilklemme, die auf dem Dosenrand steckt, wird der Strom zum Betreiben eines Solarmotors abgenommen. Alternativ kann man eine CD-ROM, die zuvor durch die Lehrkraft durch Baden in halbkonz. Salpetersäure entlackt wurde, als Aluminium-Elektrode einsetzen. Sie wird zusammen mit der Graphitelektrode in ein passendes Glas gestellt. Lehrer-/ Schülerversuch Phenolphthalein-Lösung (w<=0,9%; Lsm.: Ethanol 90 %ig), Salpetersäure (konz. w=____% (20-70%))
Modellexperiment Lithiumbatterie Elektrochemie mit Li/Cu-Zelle Gemäß Beschreibung belegt man eine Kupferplatte mit einem Stück Filterpapier, das mit Kupfersulfat-Lösung getränkt wurde. Man schneidet eine 3mm-Scheibe von einer Lithiumstange, befreit diese mittels Papiertuch von anhaftendem Paraffinöl und legt sie auf das Filterpapier. Von oben wird senkrecht eine dicke Graphitelektrode auf die Lithiumscheibe gepresst. Sie bildet den Minuspol der Batterie, das Kupferblech den Pluspol. Ein Kleinelektromotor bzw. ein Digitalmultimeter zeigt den Stromfluss bzw. die Spannung an. Lehrer-/ Schülerversuch Lithium (in Paraffinöl), Kupfer(II)-sulfat-Lösung (verd., (w: <25%))
Modellexperiment zur Silberoxid-Zink-Batterie Laden und Entladen als Redoxprozess In eine Glaswanne mit Kalilauge hängt man wie beschrieben eine blanke Silberplatte bzw. ein Silberblech sowie ein Zinkblech als Elektrode. Die Metalle sollen sich nicht berühren. Dann lädt man ca. 20 sec lang mit einer 5V-Gleichspannung und erzeugt damit die dunkelbraune Silberoxidschicht. Wasserstoff entwickelt sich am Zinkblech. Zum Entladen der Batterie wird die Spannungsquelle entfernt und an ihrer Stelle ein Kleinelektromotor in den Stromkreis eingebaut. Lehrer-/ Schülerversuch Kalilauge (konz. w=____% (5-25%)), Silber(I)-oxid, Wasserstoff (freies Gas)
Konzentrationszelle Elektrochemische Vorgänge in Kupfersalz-Lösungen A Man füllt eine zweigeteilte Petrischale (alternativ: U-Rohr mit Diaphragma) mit Kupfer(II)-sulfat-Lösung gleicher Konzentration. Ein mit Kaliumnitrat-Lösung getränkter Filterpapierstreifen oder Kerzendocht dient als Salzbrücke. Ein Spannungsmessgerät wird an zwei Kupferdrahtstücke angeschlossen, die jeweils in eine gefüllte Kammer des Gefäßes eintauchen. Nun setzt man der einen Kammer etwas Ammoniak-Lösung (alternativ: etwas Natronlauge) zu. B In einer zweigeteilten Petrischale befüllt man eine Kammer mit einer 1-molaren Kupfer(II)-sulfat-Lösung, die andere Kammer mit stark verdünnter Lösung. Wie oben beschrieben misst man die Spannung zwischen beiden Halbzellen. Lehrer-/ Schülerversuch Kupfer(II)-sulfat-Pentahydrat, Kupfer(II)-sulfat-Lösung (verd., (w: <25%)), Natronlauge (w=____% (>5%)), Ammoniak-Lösung (verd. w=____% (5-10%))

Seite 6 von 9, zeige 20 Einträge von insgesamt 179 , beginnend mit Eintrag 101, endend mit 120

Anzeige: