Experimente der Kategorie "Redoxreaktionen"
Name | Kurzbeschreibung | Beschreibung | Typ | Gefahrstoffe | |
---|---|---|---|---|---|
Vom Iodat über Iod zum Iodid | Zweistufige Reduktion von Iodat mittels Sulfit | Zu einer Lösung von Iodat wird eine mäßig konzentrierte Natriumhydrogensulfit-Lösung mittels Tropfpipette gegeben. Nach einer Braunfärbung (Iod-Bildung) wird die Lösung wieder farblos (Iodid-Bildung). | Lehrer-/ Schülerversuch | Natriumiodat, Natriumhydrogensulfit-Lösung (wässrig, w=39%), Iod | |
Passivierung von Eisen (II) | Zusammenhängende Eisenoxidschicht durch Salpetersäure | Man taucht ein Eisenblech für etwa 10 sec in ein Gefäß mit konz. Salpetersäure. Das folgende Eintauchen in zweites Gefäß mit Kupfernitrat-Lösung zeigt zunächst keine Veränderung am Blech. Ritz man es aber oberflächlich an, überzieht es sich in Kupfernitrat-Lösung mit einer Kupferschicht. | Lehrerversuch | Salpetersäure (konz. w=____% (20-70%)), Kupfer(II)-nitrat-Trihydrat | |
Zink reagiert mit Kupfersalz-Lösung. | Zinkpulver wird in Kupferionen-Lösung in exothermer Reaktion reduziert. | Zu einer Kupfer(II)-sulfat-Lösung wird unter Temperaturkontrolle Zinkpulver gegeben. | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Lösung (verd., (w: <25%)), Zink (Pulver, phlegmatisiert) | |
Synthese und Elektrolyse von Zinkiodid | Zink/Iod-Zelle als galvanisches Element | A In einem Becherglas wird gemäß Anleitung etwas klein geriebenes Iod in Wasser und Ethanol gelöst. Man setzt Zinkpulver hinzu und verrührt, bis die Lösung farblos geworden ist. B Man filtriert die Lösung und gibt sie in eine Petrischale, die in der Mitte durch einen Filterpapierstreifen (Ionenbrücke) geteilt ist. Auf beiden Seiten werden Elektroden in die Lösung gelegt. Mit einer geeigneten Batterie wird wie angegeben eine Gleichspannung angelegt und der Ladevorgang gestartet. C Nach einigen Minuten tauscht man die Gleichspannungsquelle gegen einen Verbraucher ( Motor .. LED) aus. | Lehrer-/ Schülerversuch | Zink (Pulver, nicht stabilisiert), Iod, Ethanol (ca. 96 %ig) | |
Wasserstoff-Darstellung (Laborvariante) | Zink-Salzsäure-Reaktion im Gasentwickler | In einem Kolben werden Zinkgranalien mit Salzsäure zur Reaktion gebracht. Die Säure wird aus einem Tropftrichter zugeführt, der in einem doppelt durchbohrten Stopfen steckt, eine gewinkeltes Glasrohr im selben Stopfen leitet den entstehenden Wasserstoff aus. | Lehrerversuch | Wasserstoff (freies Gas), Salzsäure (w=____% (10-25%)) | |
Reaktion von Zink und Schwefel | Zink reagiert exotherm mit Schwefel. | Zink- und Schwefelpulver werden vermischt. Das Gemisch wird auf feuerfester Unterlage mit einem glühenden Draht gezündet. | Lehrerversuch | Zink (Pulver, phlegmatisiert), Schwefel, Schwefeldioxid (freies Gas), Zinkoxid | |
Pyrolyse von Ammoniumnitrat | Zerfall von Ammoniumnitrat zu Stickoxiden und Stickstoff | Ein leeres feuerfestes Reagenzglas wird mit dem Gasbrenner stark erhitzt. Nach Entfernung des Brenners gibt man eine Spatelspitze Ammoniumnitrat in das heiße Glas. Unter Knattern und grellem Licht zersetzt sich das Salz zu Stickoxiden, auch rot-braunem Stickstoffdioxid. | Lehrerversuch | Stickstoffdioxid (freies Gas), Stickstoffmonoxid (freies Gas) | |
CfL: Die Zink-Iod-Batterie | Wirkungsweise einer "sauerstofffreien" Batterie | Zunächst schmirgelt man das Zinkblech an zwei Stellen blank. An einer wird das Kabel mit der Krokodilklemme angeschlossen, auf die andere das mit Kaliumnitrat getränkte und dreifach gefaltete Filterpapier gelegt. Nun gibt man ein Iodkristall mit einer Größe von ca. 5 x 5 mm auf das Filterpapier, verbindet das Zinkblech mit dem Minuspol und das Iod mit dem Pluspol des Mikromotors. | Lehrer-/ Schülerversuch | Iod | |
Magnesiumbrand in Wasserdampf und in Wasser | Wasserzerlegung durch unedles Metall | Eine Portion Wasser wird im Glaskolben mit weitem Hals zum Sieden erhitzt. Man bringt ein brennendes Stück Magnesiumband mit der Tiegelzange zunächst in den Wasserdampf und dann in das siedende Wasser. Der entstehende Wasserstoff entzündet sich. | Lehrerversuch | Wasserstoff (freies Gas) | |
Sauerstoff-Darstellung (Laborvariante) | Wasserstoffperoxid-Braunstein-Reaktion | In einem Kolben wird Mangan(IV)-oxid mit Wasserstoffperoxid-Lösung zur Reaktion gebracht. Die Flüssigkeit wird aus eine Tropftrichter zugeführt, der in einem doppelt durchbohrtem Stopfen steckt, eine gewinkeltes Glasrohr im selben Stopfen leitet den entstehenden Sauerstoff aus. | Lehrerversuch | Wasserstoffperoxid-Lösung (wässrig, (w: 8-35%)), Mangan(IV)-oxid, Sauerstoff (freies Gas) | |
Oxidation von Cer(III)-Ionen | Wasserstoffperoxid bzw. Kaliumpermanganat als Oxidationmittel | A Gemäß Anleitung befüllt man je ein Rggl. mit Cer(III)-nitrat-Lösung und mit der Lösung aus dem Vorversuch, die aus Cereisen-Feuersteinen gewonnen wurde. Den Lösungen wird zunächst Natronlauge und dann Wasserstoffperoxid-Lösung zugetropft. In einem zweiten Schritt erwärmt man beide Rggl. wie angegeben. B Wie bei A befüllt man die Rggl. mit den beiden Cer(III)-haltigen Lösungen. Man tropft gemäß Anleitung zunächst Natronlauge und dann Kaliumpermanganat-Lösung hinzu. | Lehrer-/ Schülerversuch | Cer(III)-nitrat, Natronlauge (verd. w: <2%), Natronlauge (w=____% (>5%)), Kaliumpermanganat-Lösung 0,1N (Maßlösung, c=0,1N) | |
Oxidation von Zink mit Kupferkontakt | Wasserstofffreisetzung bei der Zinkoxidation in Schwefelsäure | Ein Zink- und ein Kupferstab werden zunächst ohne Berührung in ein Gefäß mit Schwefelsäure gestellt. Die zu beobachtende Wasserstoffentwicklung am Zink wird stärker und verlagert sich auf den Kupferstab, wenn dieser das Zink berührt. | Lehrer-/ Schülerversuch | Schwefelsäure (konz. w: >15%), Wasserstoff (freies Gas) | |
Wasserstoff-Darstellung (Microscale) | Wasserstoff-Gewinnung durch Salzsäure-Zink- bzw. Magnesium-Reaktion | Mit Medizintechnik-Geräten wird eine kleine Portion Wasserstoff durch Einspritzen von konz. Salzsäure auf Zink oder auf Magnesium gewonnen. | Lehrer-/ Schülerversuch | Salzsäure (konz. (w: >25%)), Salzsäure (w=____% (10-25%)), Magnesium-Späne (nach GRINARD) | |
Die "Energy"-Dose | Wasserstoff-Explosion in einer Getränkedose | Vorbereitend wird bei einer 250ml-Getränkedose der Deckel herausgetrennt. Man glättet die Schnittstellen und sticht ein 1mm-Loch in den gewölbten Boden der Dose. Ein dickwandiger Salzstreuer wird mit 1,5g Natriumhydroxid und 15ml Wasser gefüllt (zu ca. 1/4 bis 1/3 seines Volumens). Wenn sich der Feststoff unter Schwenken zu einer warmen Natronlauge aufgelöst hat, setzt man ein zusammengefaltetes Stück Aluminiumfolie (8x8cm) hinzu, verschließt den Salzstreuer und stellt ihn auf eine chemikalienbeständige Unterlage. Beim Einsetzen der Gasentwicklung stülpt man die vorbereitete Getränkedose darüber und hält das kleine Loch mit dem Finger verschlossen. Unter den Rand der Dose schiebt man ein Streichholz. Erst wenn das Rauschen der Gasentwicklung nicht mehr zu hören ist (!), wird mittels langem Holzspan der Wasserstoff am oberen Loch in der Dose angezündet. Nach einiger Zeit und mit akustischer Vorankündigung schlägt die Flamme in die Dose durch. Die heftige Explosion schleudert die Dose nach oben. | Lehrerversuch | Wasserstoff (freies Gas), Natronlauge (verd. w= 10%), Natriumhydroxid (Plätzchen) | |
Hofmann'scher Wasserzersetzungsapparat (Microscale) | Wasserstoff und Sauerstoff auffangen und nachweisen | Man präpariert wie angegeben zwei 30ml-Spritzen ohne Stempel mit jeweils einer Rouladennadel aus Stahl, die als Elektroden dient. Beide Spritzen stellt man nebeneinander in einen Behälter mit Natriumcarbonat-Lösung. An die beiden Stahlelektroden wird mittels 4,5V- oder 9V-Batterie, Kabelln und Krokodilklemmen eine Gleichspannung angelegt. Die Elektrolyse des Wassers lässt man laufen, bis sich die kathodenseitige Spritze gut und die anodenseitige entsprechend gefüllt hat. Wie beschrieben wird mit der Kathodenportion eine Knallgasprobe und mit der Anodenportion eine Glimmspanprobe durchgeführt. | Lehrer-/ Schülerversuch | Wasserstoff (freies Gas), Sauerstoff (freies Gas), Natriumcarbonat-Decahydrat | |
Wasserzerlegung mittels Zink | Wasser als Oxidationsmittel | Über einem Gasbrenner wird in einem Kolben Wasser zum Sieden gebracht. Der Wasserdampf wird über einen Stopfen mit gewinkeltem Glasrohr ausgeleitet und durch ein Verbrennungsrohr geführt, in das wenige Spatelportionen Zinkpulver eingebracht wurden. Das Verbrennungsrohr ist auf der abgehenden Seite mit einem Stopfen mit zur Düse ausgezogenem Winkelrohr versehen. Das Zinkpulver wird stark erhitzt und reagiert im Wasserdampf. Der entstehende Wasserstoff kann an der Düse nach zweimaliger negativer Knallgasprobe entzündet werden. | Lehrerversuch | Zink (Pulver, nicht stabilisiert), Zinkoxid, Wasserstoff (freies Gas) | |
CfL: Der Hochofenprozess | Vorgänge beim Hochofenprozess modellhaft betrachtet | Man füllt das Reagenzglas zunächst ca. 5 – 6 cm hoch mit Oxi-Reiniger und überschichtet diesen ca. 1 cm hoch mit kleinen Tonscherben. Dann gibt man eine etwa 1 cm dicke Schicht Aktivkohle in das Glas und schichtet darüber 5-10 Eisenoxid-Bröckchen. Nun füllt man das Reagenzglas bis ca. 2 cm unter den oberen Rand mit Aktivkohle und fixiert das Gemisch oben mit etwas Glaswolle. Nun erhitzt man mit einem Brenner zunächst das Kohle-Eisenoxid-Gemisch bis zur schwachen Rotglut. Dann richtet man den Brenner auf den Oxi-Reiniger, die oben aus dem Reagenzglas austretenden gasförmigen Stoffe werden mit einem zweiten Brenner oder einem brennenden Holzspan entzündet. Bei Bedarf klopft man während der Reaktion gelegentlich vorsichtig gegen den oberen Teil des Reagenzglases, damit das Gemisch nach unten in die Verbrennungszone nachrutscht. Bei nachlassender Sauerstoffentwicklung (Glühen wird schwächer, Flamme am oberen Rand des Reagenzglases erlischt) stellt man das Erhitzen des Reinigers ein und lässt das Reagenzglas erkalten. Dann gibt man die Reste des eingesetzten Eisenoxid-Kohle-Gemisches in eine Porzellanschale und prüft mit einem Magneten. | Lehrerversuch / nicht für Lehrerinnen i.g.A. | Kohlenstoffmonoxid (freies Gas) | |
Reihenfolge der Ionenentladung | Vorgänge bei der Elektrolyse einer Natriumchlorid-Lösung | Vorbereitend wird eine 1-molare Natriumchlorid-Lösung zubereitet und ein mit gesättigter Kaliumnitrat-Lösung getränkter Filterpapierstreifen bereit gestellt. Zwei Bechergläser mit der vorbereiteten Natriumchlorid-Lösung werden mit jeweils einer Graphit-Elektrode ausgestattet und durch den Filterpapierstreifen als Ionenbrücke verbunden. Man legt gemäß Anleitung eine Gleichspannung an und beobachtet. | Lehrer-/ Schülerversuch | Kaliumnitrat | |
Sauerstoffkorrosion bei Eisen in neutraler Lösung | Visualisierung mit Farbspiel in Gelschicht | Man bereitet aus Gelatine wie beschrieben eine dickliche Lösung, der eine Spatelportion Kochsalz und einige Tropfen Phenolphthalein-Lösung zugesetzt werden. Die Lösung wird auf drei Petrischalen verteilt. In zwei der Petrischalen (A / B) wird noch etwas rotes Blutlaugensalz aufgelöst. A In die erste legt man einen Eisennagel, der in der Mitte mit wenig dünnem Kupferdraht umwickelt wurde. B In die Zweite legt man einen gebogenen Eisennagel sowie einen Nagel der in der Mitte mit der Feile angeraut wurde. C In die dritte Schale ebenfalls wird die Eisen-Kupfer-Kombination wie bei (A) eingelegt, vor dem Erstarren der Gelschicht. | Lehrer-/ Schülerversuch | Phenolphthalein-Lösung (w<=0,9%; Lsm.: Ethanol 90 %ig) | |
Rost - Bedingungen | Verhalten von Eisenwolle in verschiedenen 'Atmosphären' | Gleich große Portionen von Eisenwolle, die man mit etwas essigsaurem Wasser angefeuchtet hat, gibt man in drei Rggl. Das erste Rggl. wird mit reinem Sauerstoff befüllt, das zweite mit Stickstoff, das dritte belässt man mit der Luftportion. Die Rggl. werden mit Stopfen verschlossen, die jeweils ein schlankes Glasrohr tragen. Man stellt sie wie beschrieben mit den Rohrenden nach unten in eine Glaswanne mit gefärbtem Wasser. | Lehrer-/ Schülerversuch | Sauerstoff (Druckgas) |
Seite 1 von 12, zeige 20 Einträge von insgesamt 225 , beginnend mit Eintrag 1, endend mit 20