Experimente der Sammlung "Fachzeitschriften AULIS-Verlag"
Ausgabe | Name | Kurzbeschreibung | Beschreibung | Typ | Gefahrstoffe | |
---|---|---|---|---|---|---|
2015 (64) /5 | Kupferkorrosion mit und ohne Sauerstoffzutritt | Mitwirkung des Luftsauerstoffs bei der elektrochemischen Kupferzersetzung | Man befüllt jeweils vier Rggl. mit Salzsäure, Schwefelsäure, Essigsäure und Natriumchlorid-Lösung (c = ca. 1mol/l). Jeweils zwei dieser Ansätze werden minutenlang mit Stickstoff durchspült und dann gegen Luftzutritt mit Stopfen verschlossen. Man gibt eine Portion Kupferwolle bzw. ein Stückchen Kupferblech in die Ansätze und lässt die 16 Rggl. sieben Tage lang stehen. | Lehrer-/ Schülerversuch | Schwefelsäure (Maßlösung c= 0,5 mol/L), Salzsäure (Maßlösung c= 1 mol/L), Essigsäure (Maßlösung 1N) | |
2013 (62) /8 | Permeation von Kaliumpermanganat, Kaliumchromat und Kaliumiodid durch Dichlormethan | Modellversuch zum Ionentransport durch eine Biomembran | Gemäß Beschreibung bringt man Dichlormethan mittels Vollpipette in ein U-Rohr ein, das in ein Stativ eingespannt ist. Ein Rührfisch wird unten mittig in die Flüssigkeit platziert. In den einen Schenkel wird vorsichtig Wasser, in den anderen die Kaliumpermanganat-Lösung in gleicher Höhe aufgeschichtet. Mittels Spritze mit langer Kanüle bringt man dann den Kronenether unterhalb der Wasserschicht in die Dichlormethanphase ein. Zum kräftigen Durchmischen der org. Phase wird der Magnetrührer eingeschaltet. Man beobachtet die Wirkungsweise des Ionen-Carriers. In gleicher Weise verfährt man wie beschrieben mit schwefelsaurer Kaliumchromat-Lösung bzw. mit Kaliumiodid-Lösung, wobei bei letzterem Ansatz zum Nachweis der Permeation Silbernitrat-Lösung in die Wasserphase zugetropft wird. | Lehrer-/ Schülerversuch | Kaliumchromat, Kaliumpermanganat, Kronenether (18-Krone-6), Dichlormethan, Silbernitrat-Lösung (verdünnt, w=____% (<5%)) | |
2017 (66)/2 | Kautschuk-Gewinnung aus russischem Löwenzahn | Mörsern bzw. Behandlung der Wurzelstöcke mit Natronlauge | Gemäß Anleitung zerreibt man Wurzelstockmaterial des russischen Löwenzahns (Taraxacum kok-saghyz), bläst die Staubpartikel aus und gewinnt den gummielastischen Regulus aus der Masse. Alternativ: Gemäß Beschreibung bringt man zerkleinerte Stücke des Löwenzahnwurzelstocks in mehreren Rggl. zusammen mit der verd. Natronlauge im Wasserbad zum Kochen. Nach ca. 1h entnimmt man das Material mit der Pinzette und zerreibt es mit dem Löffelrücken auf einer Glasscheibe. Man entfernt die faserigen Bestandteile vorsichtig aus dem Kautschuknetz, das sich gebildet hat, nimmt dieses vorsichtig auf und wäscht es mit Wasser in einem Rggl. | Lehrer-/ Schülerversuch | Natronlauge (verd. w=____% (2-5%)) | |
2016 (65) /8 | Schmelztemperatur von Zinnfolie und lithiierter Zinnfolie (Vergleich) | Nachweis der entstehenden Zintl-Phasen | Gemäß Beschreibung wird ein Raktionsgefäß mit einer Elektrolyt-Lösung befüllt, die wie angegeben aus Lithiumperchlorat, Propylencarbonat und Dimethylcarbonat angemischt wird. Man setzt ein schmales Zinn-Folienstück und ein entsprechendes Graphit-Folienstück mittels Krokodilklemmen als Elektroden ein, verschaltet diese wie beschrieben mit einer Gleichspannungsquelle und taucht sie in die Elektrolyt-Lösung. Der Akkumulator wird 7 min lang mit 4,8 V geladen. Man entnimmt danach die lithiierte Zinnfolie mittels Pinzette und wäscht sie in Propylencarbonat-Lösung. Man legt sie auf einen Objektträger, zum Vergleich auch eine unbehandelte Zinnfolie auf einen zweiten Objektträger. Beide Gläser werden auf einer Heizplatte langsam stark erhitzt, bis es zum Abbrand der legierten Folie kommt. | Lehrer-/ Schülerversuch | Dimethylcarbonat, Propylencarbonat, Lithiumperchlorat | |
2016 (65) /8 | Einlegierte Lithium-Ionen in der Zinnfolie | Nachweis durch Vergleich der Flammenfärbung | Gemäß Beschreibung wird ein Raktionsgefäß mit einer Elektrolyt-Lösung befüllt, die wie angegeben aus Lithiumperchlorat, Propylencarbonat und Dimethylcarbonat angemischt wird. Man setzt ein schmales Zinn-Folienstück und ein entsprechendes Graphit-Folienstück mittels Krokodilklemmen als Elektroden ein, verschaltet diese wie beschrieben mit einer Gleichspannungsquelle und taucht sie in die Elektrolyt-Lösung. Der Akkumulator wird 7 min lang mit 4,8 V geladen. Man entnimmt danach die lithiierte Zinnfolie mittels Pinzette, wäscht sie in Propylencarbonat-Lösung und hält sie in die rauschende Brennerflamme. Zum Vergleich legt man ein ebenso großes Stück Zinnfolie für 7 min in Lithiumsalz-Lösung, wäscht sie in frischer PC-Lösung ab und prüft die Flammenfärbung beim Verbrennen in der rauschenden Brennerflamme. | Lehrer-/ Schülerversuch | Propylencarbonat, Dimethylcarbonat, Lithiumperchlorat | |
2016 (65) /6 | Gasfreisetzung bei der Kolbe- Elektrolyse | Nachweis von Wasserstoff und von Kohlenstoffdioxid | Gemäß Anleitung und Schemazeichnung wird die Elektrolyse-Apparatur mit den zwei Auffangbehältern zusammengebaut. Man befüllt das Elektrolysegefäß mit der 3-molaren Kaliumvalerat-Lösung und elektrolysiert bei 10 V - Gleichspannung. Das entstehende Kohlenstoffdioxid wir in einem der beiden seitlichen Gefäße, das mit Kalkwasserbefüllt ist, aufgefangen. In dem Gefäß auf der anderen Seite sammelt man den entstehenden Wasserstoff pneumatisch. Man macht dann damit die Knallgasprobe. | Lehrer-/ Schülerversuch | Valeriansäure, Kaliumcarbonat, Wasserstoff (freies Gas) | |
2016 (65) /1 | Die Abgangsgruppen im Konkurrenzexperiment | Nucleophile Substitution mit Triphenylphosphan | Wie in der Anleitung beschrieben werden in drei Versuchen nacheinander 1-Iodpentan, 1-Brompentan und 1-Chlorpentan mit Triphenylphosphan in Dichlormethan als Lösemittel zur Reaktion gebracht. Die Versuche werden über eine Leitfähigkeitsmessung - mit Amperemeter bzw. mit Chemophon - kontrolliert. | Lehrer-/ Schülerversuch SII | 1-Iodpentan, 1-Brompentan, 1-Chlorpentan, Triphenylphosphan, Dichlormethan | |
2016 (65) /8 | Farborgel mit Früchten | pH-abhängige Färbung von Brombeerextrakt | Vorbereitend werden pH-Pufferlösungen von pH 3 bis pH 12 bereitgestellt. Man extrahiert gemäß Anleitung Brombeerfrüchte mittels dest. Wasser und verteilt den Extrakt wie angegeben auf 10 Gläschen. Die Proben werden jeweils mit einer Pufferlösung versetzt und durch leichtes Schwenken vermischt. | Lehrer-/ Schülerversuch | Salzsäure (verd. w=____% (<10%)), Natronlauge (verd. w=____% (2-5%)) | |
2016 (65) /8 | Farbenfrohe Flechte | pH-Abhängigkeit der Farbigkeit | Gemäß Anleitung wird etwas Gelbflechte im Mörzer mit Ethanol zerrieben. Man überführt den Extrakt in 2 Gläschen und tropft der einen Probe bis zur Farbveränderung Natronlauge zu. | Lehrer-/ Schülerversuch | Ethanol (ca. 96 %ig), Natronlauge (verd. w=____% (2-5%)) | |
2015 (64) /6 | Spiropyran im Zwei-Phasen-Gemisch | Photochemische Isomerisierung mit UV-Licht | Vorbereitend wird Spiropyran nach Angaben in Toluol gelöst. Diese Lösung wird in einem großen Schnappdeckelglas mit Ethylenglykol unterschichtet. Während die Ethylengykol-Phase mit Alufolie lichtgeschützt ist, bestrahlt man die Toluol-Phase gemäß Anleitung 30 min lang mit UV-Licht. Alle 5min wird der Ethylenglykol-Phase eine kleine Probe für die photometrische Bestimmung entnommen. | Lehrer-/ Schülerversuch SII | Spiropyran, Toluol, Ethylenglykol | |
2015 (64) /4 | Zinkoxid-Nanopartikel als Farbkiller | Photokatalytische Zersetzung von Rote-Beete-Fabstoff | In vier Schnappdeckelgläsern gibt man stark verdünnten Rote-Beete-Saft. Zwei Ansätze werden mit einer Zinkoxid-Nanopartikel-Suspension versetzt. Man beobachtet die Farbveränderung. Dann wird eine Ansatz mit und ein Ansatz ohne Nano-ZnO 30 min lang einer UV-Bestrahlung ausgesetzt. Man vegleicht die vier Proben. | Lehrer-/ Schülerversuch | Zinkoxid, Ethanol (ca. 96 %ig) | |
2015 (64) /1 | Methanisierung von Wasserstoff aus reg. Energie | Platinkatalysierte Reduktion von Kohlenstoffdioxid mit Wasserstoff | Vorbereitend wird ein Quarzrohr mit Platinkatalysator-Perlen befüllt und mit Widerstandsdraht eng umwickelt, der mit einer geeigneten Spannungsquelle verbunden ist. Das Reaktionsrohr ist zwischen zwei Gasspritzen eingebaut, von denen die eine leer und die andere mit Wasserstoff und Kohlendioxid befüllt ist. Man heizt das Quarzrohr auf ca. 400 C auf und drückt langsam die Gasportion über einen 8-Minuten-Zeitraum hin und her. Der Nachweis von umgesetzten Kohlendioxid lässt sich mit der Kalkwasserreaktion durch Vergleich mit einer vorbereiteten Trübungsreihe halb quantitativ durchführen. Durch Vergleich der Flammenfarbe vor und nach dem Experiment, die man mittels kanülenbestückter Spritze erzeugt, wird untersucht, ob Waserstoff oder Methan das brennende Gas ist. Die quantitative Untersuchung der Methanisierung ist auch sehr gut mit dem Low-Cost-GC von Kappenberg möglich. | Lehrer-/ Schülerversuch SII | Methan (freies Gas), Wasserstoff (freies Gas) | |
2017 (66)/2 | Nagellack - selbst hergestellt | Produktion eines Grundlackes // Eigenschaftsuntersuchungen und -modifizierung | Vorbereitend werden drei Lösungen gemäß Anleitung angesetzt, von der Lehrkraft die Nitrocellulose-Lösung in Isoproanol und von den SuS die Ethylcellulose-Lösung in Ethylacetat und die PMMA-Lösung in Butylacetat. Nun wird unter Zugabe von Rizinusöl und eines Pigmentes der Grundlack wie beschrieben angemischt und auf mehrere Schnappdeckelgläschen verteilt. Einer dieser Proben wird Silikonöl zugesetzt. Man prüft gemäß Beschreibung die Eigenschften in der Anwendung und im Aussehen: den Glanz, die Beschaffenheit der Oberfläche, die Kratzfestigkeit, die Viskosität bzw. Fließfähigkeit. Durch Zugabe unterschiedlicher Mengen an Siliciumdioxid modifiziert man die Proben in Bezug auf die Viskosität. Mit handelsüblichen Nagellacken stellt man Vergleiche an. | Lehrerversuch mit Schülerbeteiligung | 2-Propanol, n-Butylacetat, Ethylacetat, Nitrocellulose (mit weniger als 12,6% N), Quarz (Pulver, Wolle (alveolengängig)) | |
2017 (66) /1 | Kalk ausfällen mit Kohlendioxid | Reaktion einer Calciumhydroxid-Lösung (Kalkwasser) | Gemäß Anleitung gibt man eine Brausetablette in einen Erlenmeyerkolben mit Wasser, setzt sofort einen Stopfen mit gewinkeltem Gasableitungsrohr auf, welches das entstehende Kohlendioxid in ein Becherglas mit Calciumhydroxid-Lösung einleitet. | Lehrer-/ Schülerversuch | ||
2015 (64) /5 | Kupferkorrosion in Säuren | Reaktion von Kupferspänen mit Salz- Schwefel- und Essigsäure | Reagenzglasversuch: Man überschichtet jeweils eine Portion Kupferspäne in drei Ansätzen mit Salzsäure, mit Schwefelsäure und mit Essigsäure. Für mehrere Wochen bleiben die Gefäße offen stehen, evtl. Flüssigkeitsverlust wird durch Nachfüllen der entsprechenden Säure ausgeglichen. | Lehrer-/ Schülerversuch | Schwefelsäure (verd. w=____% (5-15%)), Salzsäure (verd. w=____% (<10%)), Essigsäure (w=____% (10-25%)) | |
2016 (65) /6 | Darstellung meso-substituierter Porphyrine nach ADLER | Reaktion von Pyrrol und verschiedenen Aldehyden zu purpurnen und blauvioletten Farbstoffen | Gemäß Anleitung wird ein Dreihals-Rundkolben mit der Propionsäure und dem Aldehyd befüllt und in eine Reflux-Apparatur eingebaut. Man bringt die Propionsäure-Lösung unter Rückflusskühlung zum Sieden, dosiert vorsichtig tropfenweise das Pyrrol mittels Spritze hinzu. Nach 30-minütigem Sieden der Mischung lässt man auf Raumtemperatur abkühlen, gibt wie beschrieben Methanol hinzu und kühlt anschließend im Eisbad. Nach der Kristallisation gewinnt man den Feststoff durch Filtration und wäscht ihn wie angegeben mit Methanol-Wasser-Gemisch. | Lehrer-/ Schülerversuch SII | Propionsäure, Pyrrol, Benzaldehyd, 4-Hydroxybenzaldehyd, Methanol, 2-Chlorbenzaldehyd | |
Nachweis der nucleophilen Substitution | Reaktion von Triphenylphosphan mit 1-Iodpentan | Vorbereitend wird gemäß Anleitung in einem Becherglas Triphenylphosphan in Dichlormethan gelöst. Ebenso stellt man eine Lösung von 1-Iodpentan in Dichlormethan her. Man misst die Leitfähigkeit dieser Lösung. In einem Rundkolben lässt man die beiden Lösungen unter Kontrolle der Leitfähigkeit 3min lang reagieren. Fortführung: Zur Fällung des Silberhalogenids bringt man gemäß Anleitung Triphenylphosphan mit 1-Iodpentan im Lösemittel Toluol zur Reaktion, erhitzt bis zum Einsetzen der Trübung und setzt der abgekühlten Lösung Kaliumnitrat-Lösung zu. Man schüttel die Lösung aus, und überführt die wässrige Phase in ein Rggl. und fällt mit Silbernitrat-Lösung die Halogenid-Ionen. | Lehrer-/ Schülerversuch SII | Triphenylphosphan, Dichlormethan, Toluol, Silbernitrat-Lösung (verdünnt, w=____% (<5%)) | ||
2017 (66) /1 | Farbwechsel eines mit Polyanilin beschichteten FTO-Glases | Reaktionen in saurem und alkalischem Milieu | Man stellt gemäß Anleitung Natronlauge und Schwefelsäure in zwei KS-Gefäßen bereit, ein drittes Gefäß wird mit dest. Wasser befüllt. Ein mit PANI beschichtetes FTO-Glas wird zunächst in die Natronlauge getaucht, danach in das dest. Wasser und anschließend in die Schwefelsäure. In gleicher Weise verfährt man mit einem FTO-Glas, das mit dem gelben Leukoemeraldin Salz beschichtet ist. | Lehrer-/ Schülerversuch | Natronlauge (Maßlösung c= 1 mol/L), Schwefelsäure (verd. w=____% (5-15%)) | |
2015 (64) /4 | Gold-Nanopartikel aus der Mikrowelle I | Reduktion von Goldsäure mit Citrat | Vorbereitend werden mittels demin. Wasser jeweils Lösungen (w: 1%) von Tetrachlorgoldsäure und tri-Natriumcitrat-Dihydrat hergestellt. Die Natriumcitrat-Lösung wird gemäß Rezeptur mit dem ca. 10-fachen Volumen der Goldsäure-Lösung versetzt und dann auf das gut 30fache Volumen mit Wasser aufgefüllt. In einem größeren Glaskolben wird das Gemisch in einem haushaltsüblichen Mikrowellengerät zur Reaktion gebracht (120W / 15min oder 230W / 8min). Es entsteht eine rötliche Suspension mit Nanopartikeln des Edelmetalls. Bei einer Filtration der Suspension passieren die Nanopartikel das Filterpapier. | Lehrer-/ Schülerversuch | Tetrachloridogold(III)-säure-Hydrat | |
2016 (65) /7 | Kombinierte Redoxreaktionen | Reduktion von Permanganat-Ionen und von Brom zu Bromid | Vorbereitend stellt man gemäß Anleitung die Natriumalginat-Lösung und die Calciumchlorid-Lösung her. In einem Becherglas löst man wie angegeben Kaliumpermanganat und Kaliumbromid und fügt unter Rühren die Natriumalginat-Lösung hinzu. Zur Herstellung der violetten Alginat-Bällchen tropft man langsam die Calciumchlorid-Lösung zur Mischung. Die Bällchen werden mittels feinem Sieb getrennt und mit Wasser gewaschen. In einem kleinen Glas überschichtet man sie wie beschrieben mit einer schwefelsauren Natriumsulfit-Lösung. Der Reaktionsablauf wird auf einer Leuchtplatte visualisiert. | Lehrer-/ Schülerversuch | Kaliumpermanganat, Calciumchlorid-Dihydrat, Natriumsulfit-Heptahydrat, Schwefelsäure (verd. w=____% (5-15%)), Kaliumbromid |
Seite 4 von 7, zeige 20 Einträge von insgesamt 126 , beginnend mit Eintrag 61, endend mit 80