Experimente der Sammlung "Akademiebericht Chemie? Aber sicher! (ALP Dillingen)"

AusgabeNameKurzbeschreibungBeschreibungTypGefahrstoffe
2. Auflage 23-27 Bleiakkumulator (Modell) Redoxreaktionen beim Laden und Entladen Zwei Bleiplatten bzw. -bleche tauchen in einem Gefäß in etwa 30%ige Schwefelsäure. An der Oberfläche entsteht sofort eine Bleisulfat-Schicht. Die Platten sind für den Ladevorgang mit einer Gleichstromquelle (4,5 V) verbunden, zum Entladen mit einem Glühlämpchen oder Motor/ Rotor. Beim etwa 3-5-minütigen Ladevorgang wird das Bleisulfat zu Blei(IV)-oxid bzw. zu elementarem Blei umgesetzt. Lehrerversuch / nicht für Lehrerinnen i.g.A. Blei(II)-sulfat, Blei(IV)-oxid, Schwefelsäure (konz. w: >15%)
2. Auflage 23-23 Modellexperiment zur Silberoxid-Zink-Batterie Laden und Entladen als Redoxprozess In eine Glaswanne mit Kalilauge hängt man wie beschrieben eine blanke Silberplatte bzw. ein Silberblech sowie ein Zinkblech als Elektrode. Die Metalle sollen sich nicht berühren. Dann lädt man ca. 20 sec lang mit einer 5V-Gleichspannung und erzeugt damit die dunkelbraune Silberoxidschicht. Wasserstoff entwickelt sich am Zinkblech. Zum Entladen der Batterie wird die Spannungsquelle entfernt und an ihrer Stelle ein Kleinelektromotor in den Stromkreis eingebaut. Lehrer-/ Schülerversuch Kalilauge (konz. w=____% (5-25%)), Silber(I)-oxid, Wasserstoff (freies Gas)
2. Auflage 23-21 LECLANCHÉ-Element Primärelement aus klassischen Batterien Ein Tonzylinder wird mit einem Graphit-Braunstein-Gemisch (1:1) befüllt und mittig in ein Becherglas gestellt. Das Becherglas wird gemäß Anleitung mit gesättigter Ammoniumchlorid-Lösung aufgefüllt. Man positioniert den Elektrodenhalter mit der Graphit und der Zinkelektrode wie angegeben in das Becherglas und misst die anstehende Spannung. Alternativ: Anstelle des Tonzylinders lässt sich auch eine Extraktionshülse oder ein vielfach durchlöcherter med. Spritzenzylinder verwenden. Lehrer-/ Schülerversuch Ammoniumchlorid, Mangan(IV)-oxid
2. Auflage 23-19 Modellexperiment Lithiumbatterie Elektrochemie mit Li/Cu-Zelle Gemäß Beschreibung belegt man eine Kupferplatte mit einem Stück Filterpapier, das mit Kupfersulfat-Lösung getränkt wurde. Man schneidet eine 3mm-Scheibe von einer Lithiumstange, befreit diese mittels Papiertuch von anhaftendem Paraffinöl und legt sie auf das Filterpapier. Von oben wird senkrecht eine dicke Graphitelektrode auf die Lithiumscheibe gepresst. Sie bildet den Minuspol der Batterie, das Kupferblech den Pluspol. Ein Kleinelektromotor bzw. ein Digitalmultimeter zeigt den Stromfluss bzw. die Spannung an. Lehrer-/ Schülerversuch Lithium (in Paraffinöl), Kupfer(II)-sulfat-Lösung (verd., (w: <25%))
2. Auflage 23-15 Getränkedosen-Batterie / CD-ROM-Batterie Aluminium-Luft-Zelle Eine Getränkedose wird auf 2/3 ihrer Höhe mit der Schere gekürzt. Man schmirgelt die Innenseite und den Ansatz für die Krokodilklemme auf der Außenseite mit Schleifpapier an. Die Dose wird mit Kochsalz-Lösung, der etwas Phenolphthalein-Lösung beigegeben wurde, gefüllt. Mittels Stativ wird eine Graphitelektrode in die Lösung getaucht, ohne das Dosenmetall zu berühren. Über diesen Graphitstab und eine Krokodilklemme, die auf dem Dosenrand steckt, wird der Strom zum Betreiben eines Solarmotors abgenommen. Alternativ kann man eine CD-ROM, die zuvor durch die Lehrkraft durch Baden in halbkonz. Salpetersäure entlackt wurde, als Aluminium-Elektrode einsetzen. Sie wird zusammen mit der Graphitelektrode in ein passendes Glas gestellt. Lehrer-/ Schülerversuch Phenolphthalein-Lösung (w<=0,9%; Lsm.: Ethanol 90 %ig), Salpetersäure (konz. w=____% (20-70%))
2. Auflage 23-14 Zitronenbatterie Primärelement mit Kupfer- und Zink-Elektroden Vorbereitend wird die Zitrone gemäß Anleitung mit zwei breiten Schlitzen in der Schale versehen. Man steckt eine Kupfer- und eine Zink-Elektrode in die Schlitze, ohne dass sich diese berühren. Nach Anschließen der Kabel an die Elektroden wird die Spannung gemessen und evtl. ein Kleinmotor mit Propeller angeschlossen. Lehrer-/ Schülerversuch
2. Auflage 23-13 Reinigung angelaufener Silbergegenstände Reaktion von Silbersulfid mit Aluminium Ein Silbergegenstand mit schwarzem Belag reagiert in warmem Salzwasser mit Aluminiumfolie. Bei der Entfernung des Silbersulfidbelags entsteht wenig Schwefelwasserstoff. Lehrer-/ Schülerversuch Schwefelwasserstoff (freies Gas)
2. Auflage 23-11 Standardpotential bei Zink und bei Kupfer Messung in einer dreiteiligen Petrischale Die Kammern der Petrischale werden 1) mit 1-molarer Kupfersulfat-Lösung, 2) mit 1-molarer Zinksulfat-Lösung sowie 3) mit 1-molarer Salzsäure befüllt. Ein Stück Magnesiumband sorgt in der Salzsäure für stetige Wasserstoffentwicklung. Als Elektrode der Wasserstoffhalbzelle wird eine Platindraht, bei der Kupferhalbzelle ein Stück Kupferdraht und bei der Zinkhalbzelle ein Zinkdraht eingelegt. Mit Kaliumnitrat-Lösung getränkte Dochtstücke oder Filterpapierstreifen werden als Salzbrücke benutzt. Mit einem Digitalmultimeter misst man die jeweiligen Spannungen gegenüber der Wasserstoffelektrode. Lehrer-/ Schülerversuch Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Salzsäure (Maßlösung c= 1 mol/L)
2. Auflage 23-09 Spannungsreihe der Nichtmetalle Redoxpotential-Messung mit Bromid und Iodid Gemäß angegebenem Schema befüllt man drei Vertiefungen einer Zellkulturplatte mit Kaliumiodid-Lösung, mit Kaliumchlorid-Lösung und mit Bromwasser. Ein Dochtstück oder Filterpapierstreifen wird als Salzbrücke zwischen den Mulden eingelegt. Mittels Bleistiftminen als Grafitelektroden misst man mit einem Digitalmultimeter die Spannung zwischen der Brom- und der Iod-Halbzelle. Lehrer-/ Schülerversuch Bromwasser (verd. (w: 1-5%))
2. Auflage 23-07 Spannungsreihe der Metalle Arbeit auf der Zellkulturplatte Gemäß Anleitung befüllt man fünf Kammern der Platte jeweils mit einer der metallsalz-Lösungen, die sechste in der Mitte mit Kaliumnitrat-Lösung. Durch Einlegen der Metallstreifen in die jeweilige Salzlösung bereitet man die Halbzellen vor. Von jeder Halbzelle führt ein mit Kaliumnitrat-Lösung getränktes Kerzendochtstück in die zentrale Kaliumnitrat-Mulde. Nun misst man mit einem Digitalmultimeter wie beschrieben die zwischen den fünf Halbzellen anliegenden Spannungen. Lehrer-/ Schülerversuch Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Eisen(II)-sulfat-Heptahydrat, Silbernitrat-Lösung (verdünnt, w=____% (<5%))
2. Auflage 23-05 Daniell-Element mit zwei Halbzellen Elektrochemie mit Zink und Kupfer in ihren jeweiligen Salz-Lösungen Zwei Bechergläser, das eine mit 1-molarer Kupfer(II)-sulfat-Lösung, das andere mit Zink(II)-sulfat-Lösung, werden gemäß Beschreibung mit Elektrodenhaltern bestückt, die die jeweiligen Metallplatten tragen. Die beiden Buchsen werden über Kabel mit einem Propellermotor verbunden. Ein mit Kaliumnitrat-Lösung getränkter Papierstreifen dient als Salzbrücke zwischen den Bechergläsern. Lehrer-/ Schülerversuch Kupfer(II)-sulfat-Pentahydrat, Zinksulfat-Heptahydrat, Kaliumnitrat
2. Auflage 23-03 Energieumsatz bei der Reaktion Zink // Kupfersulfat-Lösung Exothermie einer Redoxreaktion Man taucht gemäß Beschreibung ein Digitalthermometer mit 0,1°C-Teilung in eine Kupfer(II)-sulfat-Lösung. Dann setzt man das Zinkpulver hinzu und rührt ständig um. Dabei wird die Temperaturveränderung im 15 sec-Abstand über 5 min gemessen. Lehrer-/ Schülerversuch Kupfer(II)-sulfat-Lösung (verd., (w: <25%)), Zink (Pulver, nicht stabilisiert)
2. Auflage 23-02 Redoxreihe der Metalle Reaktionen in Petrischalen bzw. Zellkulturplatten In jeweils parallelen Ansätzen bringt man in Petrischale oder auf einer Zellkulturplatte ein Metall mit der Ionenlösung eines anderen Metalls in Kontakt, beginnend mit Eisennagel in Kupfersalz-Lösung und Kupferdrahtstück in Eisensalzlösung. Ebenso verfährt man mit den anderen Metallen/ Metallsalzlösungen. Lehrer-/ Schülerversuch Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Eisen(II)-sulfat-Heptahydrat, Silbernitrat-Lösung (verdünnt, w=____% (<5%))
2. Auflage 23-01 "Schwarze Löcher" Reaktion von Aluminium mit Zinn(II)-salz-Lösung Vorbereitend entfernt man im Abzug die Lackschicht einer CD-ROM durch Tauchen in halbkonz. Salpetersäure. Auf die freigelegte Aluminiumschicht tropft man Zinn(II)-Chlorid-Lösung. Lehrer-/ Schülerversuch Salpetersäure (konz. w=____% (20-70%)), Zinn(II)-chlorid-Dihydrat
2. Auflage 22-11 / 22-13 Essigsäure-Acetat-Puffer Farbspiele bei Säure- bzw. Laugezugabe Jeweils 1-molare Essigsäure- und Natriumacetat-Lösung werden bereitgestellt. Gemäß Anleitung befüllt man jeweils drei Rggl. 1) mit der Essigsäure, 2) mit der Na-acetat-Lösung und 3) mit einem gleichteiligen Gemisch beider Lösungen. Man tropft in alle Ansätze etwas Indikatorlösung. Dann wird wie angegeben jeweils das erste Rggl. jeder Serie mit Salzsäure und das dritte mit Natronlauge versetzt. Das zweite Rggl. dient jeweils zum Farbvergleich. Alternativ lässt sich das Experiment bei Nutzung von dreigeteilten Petrischalen als OHP-Präsentation gestalten. Lehrer-/ Schülerversuch Salzsäure (Maßlösung c= 1 mol/L), Natronlauge (Maßlösung c= 1 mol/L), Thymolblau-Lösung 0,1% (0,1% in Ethanol)
2. Auflage 22-09 Phosphatpuffer als "Wunderwasser" Ausbleibende Indikator-Umfärbung Wie beschrieben stellt man durch quantitatives Mischen Na-hydrogenphosphat und Na-dihydrogenphosphat eine Pufferlösung pH7 bereit. Auf drei Rggl. verteilt setzt man gemäß Anleitung Salzsäure bzw. Natronlauge zu. Die Farbreaktionen einer vergleichbaren Vorgehensweise bei normalem Wasser wird gezeigt. Lehrer-/ Schülerversuch Salzsäure (Maßlösung c= 0,1 mol/L), Natronlauge (Maßlösung c= 0,1 mol/L), Universalindikator, flüssig (Skala pH 4-10; enth. Ethanol)
2. Auflage 22-08 Verschiebung einer Gleichgewichtslage Brom-Einwirkung bei Acetessigsäureethylester Gemäß Anleitung versetzt man eine Portion Wasser mit Acetessigsäureethylester und etwas Eisen(III)-chlorid. Durch Zugabe von Bromwasser zerstört man vorübergehend den roten Farbkomplex. Lehrerversuch Bromwasser (verd. (w: 1-5%)), Ethylacetoacetat, Eisen(III)-chlorid-Hexahydrat
2. Auflage 22-07 Temperaturabhängigkeit des NO2 / N2O4-Gleichgewichtes Experiment in Rundkolben Im Abzug stellt die Lehrkraft durch Auftropfen von konz. Salpetersäure auf Kupferspäne im Gasentwickler drei Portionen nitroser Gase in Rundkolben bereit. Die Rundkolben werden verschlossen in Bechergläser mit Eiswasser, Leitungswasser und Heißwasser gestellt. Lehrerversuch Salpetersäure (rauchend, (w: >70%)), Stickstoffdioxid (freies Gas)
2. Auflage 22-05 Störung und Neueinstellung des NO2 / N2O4-Gleichgewichtes Wirkung von Druck- und Temperaturveränderung (Microscale) Gemäß Anleitung stellt die Lehrkraft in zwei verschließbaren 20ml-Spritzen Portionen nitroser Gase bereit. (GBU zur Microscale-NOx-Gewinnung beachten!) A Mit einem OHP zeigt man wie beschrieben die Wirkung einer Druckverminderung durch Herausziehen des Stempels, anschließend erhöht man den Druck durch Hereinpressen. B Mann stellt eine der beiden Spritzen in ein Gefäß mit sehr heißem Wasser und vergleicht anschließend die Farbe der Gase in beiden Spritzen. Lehrerversuch Stickstoffdioxid (freies Gas), Salpetersäure (rauchend, (w: >70%))
2. Auflage 22-03 Kohlenstoffdioxid - "Kohlensäure" - Gleichgewicht Einfluss von Druck und Temperatur A In eine große Luer-Lock-Spritze gibt man etwas Mineralwasser ('spritzig'), dem einige Tropfen pH-Indikator zugefügt wurden. Unter Schütteln zieht man wie beschrieben den Stempel etwas heraus und erzeugt Unterdruck. Dann presst man die Gasphase wieder zusammen. B Wie unter A beschrieben wird die Spritze befüllt. Man stellt sie gemäß Anleitung zunächst in ein Becherglas mit heißem Wasser, anschließend Eiswasser, wobei sie leicht hin und her bewegt wird. Lehrer-/ Schülerversuch Universalindikator, flüssig (Skala pH 4-10; enth. Ethanol)

Seite 3 von 15, zeige 20 Einträge von insgesamt 289 , beginnend mit Eintrag 41, endend mit 60