Experimente
Name | Kurzbeschreibung | Beschreibung | Typ | Gefahrstoffe | |
---|---|---|---|---|---|
Ein LCD selber machen | Bau eines einfachen 1-Pixel-Displays | Vorbereitend werden die zwei leitfähigen Glasplatten zur Entfettung durch 3-5-minütiges Kochen in Natronlauge der angegebenen Konzentration gekocht. Gemäß Anleitung wird dann das Display Schicht für Schicht unter Verwendung von MBBA als Flüssigkristall zusammengesetzt. Die Ränder der Konstruktion werden mit 2-Komponentenkleber versiegelt (überstehender Kleber mit etwas Aceton entfernt). | Lehrer-/ Schülerversuch | Aceton, Natronlauge (Maßlösung c= 0,1 mol/L), N-(methoxybenzyliden)-4-butylanilin | |
Nagellack - selbst hergestellt | Produktion eines Grundlackes // Eigenschaftsuntersuchungen und -modifizierung | Vorbereitend werden drei Lösungen gemäß Anleitung angesetzt, von der Lehrkraft die Nitrocellulose-Lösung in Isoproanol und von den SuS die Ethylcellulose-Lösung in Ethylacetat und die PMMA-Lösung in Butylacetat. Nun wird unter Zugabe von Rizinusöl und eines Pigmentes der Grundlack wie beschrieben angemischt und auf mehrere Schnappdeckelgläschen verteilt. Einer dieser Proben wird Silikonöl zugesetzt. Man prüft gemäß Beschreibung die Eigenschften in der Anwendung und im Aussehen: den Glanz, die Beschaffenheit der Oberfläche, die Kratzfestigkeit, die Viskosität bzw. Fließfähigkeit. Durch Zugabe unterschiedlicher Mengen an Siliciumdioxid modifiziert man die Proben in Bezug auf die Viskosität. Mit handelsüblichen Nagellacken stellt man Vergleiche an. | Lehrerversuch mit Schülerbeteiligung | 2-Propanol, n-Butylacetat, Ethylacetat, Nitrocellulose (mit weniger als 12,6% N), Quarz (Pulver, Wolle (alveolengängig)) | |
Eigenschaften von Stahl | Veränderung durch Wärmebehandlung | Vorbereitend werden drei Rasierklingen von der Lehrkraft auf Schmirgelpapier abgestumpft. Eine Rasierklinge wird mittels Tiegelzange im heißen Teil der Gasbrennerflamme erhitzt. Dann drosselt man die Luftzufuhr und zieht die Klinge langsam aus der Flamme. Nach dem Abkühlen prüft man die Elastizität des Stahls. Eine weitere Klinge wird in gleicher Weise bis zum Glühen erhitzt, aber sofort danach in ein Becherglas mit Wasser eingetaucht. Nach dem Abkühlen prüft man die Elastizität des Stahls. Eine dritte Klinge wird unter Beobachtung der Oberfläche langsam von oben in die Flamme gesenkt. Die zweite Rasierklinge wird abgeschmirgelt und bis zur violetten Anlauffarbe in die Brennerflamme gehalten, dann prüft man wieder die Elastizität. | Lehrer-/ Schülerversuch | ||
Eisenchloridprobe - Grünspanbildung | Spezifische Reaktionen von Ameisen- und Essigsäure | Vorbereitend werden durch Lösen bzw. Verdünnen die erforderlichen Lösungen bereit gestellt. Eine 10%ige Essigsäure wird mit Natriumcarbonat-Lösung zur Neutralisation bis zur ausbleibenden Kohlendioxidentwicklung versetzt. A Im Rggl. wird die neutralisierte Lösung mit einigen Tropfen Eisen(III)-Chlorid-Lösung versetzt, geschüttelt und über der Brennerflamme zum Sieden erhitzt. Mna wiederholt den Versuch mit einer Natriumacetat- und mit einer Natriumformiat-Lösung. B Langzeitversuch: Man stellt gemäß Anleitung ein Stück Kupferblech in Ameisensäure und ein weiteres Blech in Glas mit Essigsäure. Ein drittes Kupferblech wird in der Brennerflamme kräftig durchgeglüht und anschließend in Essigsäure gestellt. Man bewahrt die drei Ansätze 2 Wochen lang an einem Ort mit freier Luftzufuhr auf. | Lehrer-/ Schülerversuch | Ameisensäure (konz. w=_____% (>80%)), Essigsäure (w=____% (>90%)), Natriumcarbonat-Decahydrat, Eisen(III)-chlorid-Hexahydrat | |
Die Umkehrzelle (Demo) | Konzentrationsabhängigkeit der elektrochemischen Reaktion in Cu-Halbzellen | Vorbereitend werden ein gesättigte sowie eine 0,05-molare und eine 0,005-molare Kupfer(II)-nitrat-Lösung nach Anleitung hergestellt. Die beiden Maßlösungen werden mit Kaliumnitrat in vorgegebener Konzentration angereichert. Man gibt die Maßlösungen in zwei Bechergläser, verbindet diese mit einem getränkten Filterpapierstreifen als Stromschlüssel und stellt zwei mit Salzsäure gut gereinigte Kupferbleche als Elektroden hinein, die mit dem "Messmotor" verschaltet sind. Man beobachtet den anfänglichen Drehsinn des Rotors und die Veränderungen bei langsamer Zugabe von gesättigter Kupfer(II)-nitrat-Lösung zu der Halbzelle mit der nur 0,005-molaren Lösung. | Lehrer-/ Schülerversuch | Kupfer(II)-nitrat-Trihydrat, Salzsäure (Maßlösung c= 1 mol/L) | |
Oxidation von Isocitrat | Katalyse mit Isocitrat-Dehydrogenase und Mangan(II)-Ionen | Vorbereitend werden eine 0,1%ige Isocitrat-Lösung, eine NADP-Lösung, eine Mangan(II)-chlorid-Lösung, eine ICDH-Lösung sowie eine Imidazol-Pufferlösung pH 7,1 gemäß Anleitung hergestellt. Reagenzgläser werden mit den Lösungen wie im Pipettierschema angegeben befüllt. Man startet die Reaktion durch Zugabe der ICDH-Lösung. | Lehrerversuch / nicht für Lehrerinnen i.g.A. | Salzsäure (Maßlösung c= 0,1 mol/L), Mangan(II)-chlorid-Tetrahydrat, Imidazol | |
Konzentrationselemente I | Potentialgefälle zwischen Kupfer(II)-sulfat-Lösungen unterschiedlicher Konzentration | Vorbereitend werden eine 1-molare sowie eine stark verdünnte Kupfer(II)-sulfat-Lösung. Mit gesättigter Kaliumnitrat-Lösung wird ein Filterpapierstreifen getränkt. Variante A: Gemäß Anleitung werden zwei Bechergläser mit den Kupferionen-Lösungen befüllt und mit Kupfer-Elektroden ausgestattet. Nach der Verbindung der beiden Gläser mit dem Filterpapierstreifen als Stromschlüssel misst man die Leerlaufspannung der galvanischen Zelle. Variante B: Man stellt aus 1-molarer Kupfer(II)-sulfat-Lösung und Kupferelektroden zwei gleiche Halbzellen zusammen, verbindet sie mit Stromschlüssel und legt das Spannungsmessgerät an. Dann wird Ammoniak-Lösung (alternativ Natronlauge) hinzu pipettiert. als | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Pentahydrat, Ammoniak-Lösung (verd. w=____% (5-10%)), Natronlauge (w=____% (>5%)), Kaliumnitrat | |
Hydratation von Fumarat | Malat-Darstellung mittels Fumarase | Vorbereitend werden eine Fumarat-Lösung, eine Maleat-Lösung, eine Malat-Lösung und eine Fumarase-Lösung nach Anleitung zubereitet. Für das Nachweis-Reagenz verdünnt man 10%ige Kupfer(II)-sulfatlösung mit demin. Wasser und fügt gemäß Anleitung wenig Pyridin hinzu. Man befüllt 6 Reagenzgläser, wie im Pipettierschema angegeben, mit den Lösungen. Der ersten 3 Rggl. werden sofort einige Tropfen Nachweis-Reagenz zugesetzt. Man vermischt durch Schütteln. Den anderen drei Rggl. tropft man nach 5-10 min ebenfalls Nachweis-Reagenz zu. | Lehrer-/ Schülerversuch SII | DL-Äpfelsäure, Pyridin, Kupfer(II)-sulfat-Pentahydrat | |
Samen atmen bei der Keimung | Kohlenstoffdioxidnachweis | Vorbereitend werden Erbsen gemäß Anleitung in verschlossenen Standzylindern o.ä. fünf Tage lang auf feuchter Watte zum Keimen gebracht. Danach öffnet man die Gefäße und senkt eine brennende Kerze hinein. Alternativ taucht man einen Tropfen Kalkwasser am Glasstab in den Standzylinder. | Lehrer-/ Schülerversuch | ||
Bestimmung des Katalasegehalts durch Titration | (Praktikumsversuch) Quantitative Katalase-Bestimmung bei Neutralisationstabletten eines Kontaktlinsenreinigungssystems | Vorbereitend werden für die Kalibrierung eine Katalase-Lösung sowie eine Wasserstoffperoxid-Lösung, eine 10%ige Kaliumiodid-Lösung, eine Phosphat-Pufferlösung pH6,8 und eine Neutralisationstabletten-Lösung gemäß Beschreibung angesetzt. Für die Nullwertbestimmung und das Anlegen der Kalibriergeraden legt man nach Anleitung die Mischung aus Pufferlösung, Wasserstoffperoxid-Lösung, Schwefelsäure, Kaliumiodid-Lösung und Molybdat-Lösung sowie einigen Tropfen Stärke-Lösung im Erlenmeyerkolben vor und titriert mit der Natriumthiosulfat-Lösung bis zur Entfärbung. Zur Bestimmung des Katalase-Gehalts wird dann mit der Neutralisationstabletten-Lösung in gleicher Weise verfahren. | Lehrer-/ Schülerversuch SII | Wasserstoffperoxid-Lösung (wässrig, (w: 8-35%)), Natronlauge (Maßlösung c= 0,1 mol/L), Schwefelsäure (konz. w: >15%) | |
Intensität der Photosynthese | Abhängigkeit der Reaktion von verschiedenen Faktoren | Vorbereitend werden für jede Versuchsvariante Rggl. halbhoch mit Wasser gefüllt und mit einem gleich langen Sprossstück (möglichst gleich viele Blättchen) von Elodea oder Cabomba bestückt. A Faktor Temperatur: Drei Reagenzgläser mit 15 °C, 25 °C und 35 °C werden gleichmäßig belichtet. Man kontrolliert die Bläschenbildung durch Zählung in einem festgelegten Zeitraum. B Faktor Lichtintensität: Man vergleicht quantitativ die Bläschenentwicklung bei zwei vorbereiteten Rggl. - eines im direkten Licht, eines in einer dunklen Raumecke. C Faktor Wellenlänge: Drei vorbereitete Rggl. werden mit unterschiedlich farbiger Klarsichtfolie umwickelt, ein viertes dient - ohne Folie - der Kontrolle. Die Bläschenbildung wird vergleichend ausgewertet. D Faktor Kohlenstoffdioxid: Man vergleicht die Bläschenbildung unter Belichtung in drei vorbereiteten Rggl., eines mit belüftetem Wasser und eines mit abgekochtem Wasser befüllt. Dem dritten wird ein Stückchen Trockeneis oder eine Spsp. Natriumhydrogencarbonat zugesetzt. | Lehrer-/ Schülerversuch | ||
Glucose-selektive Enzymelektrode | Messung von Glucose-Oxidase-Aktivität zur Ermittlung von Glucosegehalten | Vorbereitend werden gemäß Anleitung aus Natronlauge- und Essigsäure-Maßlösungen ein Acetat-Puffer pH5 und aus Kaliumdihydrogenphosphat- und Dinatriumhydrogenphosphat ein Phosphat-Puffer pH6,9 hergestellt. Zur Untersuchung stehen Glucose-Lösungen 6 verschiedener Konzentrationen (c= 0,1 - 2,0 mmol/l) bereit. Das gemäß Beschreibung durch Benetzung mit Glucose-Oxidase präparierte Leinentuchstück wird 60min lang in einer Propan-2-ol/Pentandial/Wasser-Lösung geschüttelt und nach dem Abspülen auf der Sauerstoffelektrode befestigt. In einem acetat-gepuffertem Gemisch aus Glycerin, Flüssigsorbit und Tetramethylammoniumchlorid wird die präparierte Elektrode aufbewahrt. 100ml der zu prüfenden Glucose-Lösung werden jeweils unter Rühren mit Sauerstoff gesättigt. Dann wird mit der eingetauchten Enzymelektrode der Sauerstoffgehalt und seine Veränderung in 10-sec-Abständen gemessen. | Lehrer-/ Schülerversuch | Isobutanol, Glutardialdehyd-Lösung (wässrig, w=25%), Natronlauge (Maßlösung c= 0,1 mol/L), Tetramethylammoniumchlorid | |
Adsorptives Färben auf Eloxal | Aufbringen organischer Farben auf eloxiertes Aluminium | Vorbereitend werden gemäß Anleitung die anionischen, gut wasserlöslichen Farbstoffe in einer Konzentration von w= 0,1 - 5% gelöst, wobei die Lösung auf pH=5,5 schwach sauer eingestellt wird. Man erhitzt das Farbbad (50 - 60 °C) und setzt die eloxierte Materialprobe 20min lang dieser Flüssigkeit aus. Zur Verdichtung der Eloxalschicht wird das Werkstoff anschließend 30min lang in kochend heißes Wasser gelegt, dem eine Spsp. Ammoniumacetat zugesetzt wurde. | Lehrer-/ Schülerversuch | ||
Chamäleonbällchen mit Rosenindikator | Farbreaktionen in Abhängigkeit vom pH-Wert | Vorbereitend werden gemäß Anleitung die Blätter einer tiefroten Rose zerkleinert und mit Wasser extrahiert. Den Farbextrakt versetzt man dann wie angegeben mit Natriumalginat und erwärmt unter Rühren 15 min lang. Die durch Zugabe von Calciumchlorid-Lösung gewonnenen Alginatbällchen trennt man mit dem Sieb ab, verteilt auf drei Gläschen und setzt wie beschrieben dem ersten Salzsäure, dem zweiten Leitungswasser und dem dritten Soda-Lösung zu. | Lehrer-/ Schülerversuch | Natriumcarbonat-Decahydrat, Calciumchlorid-Dihydrat | |
Siedetemperaturmessung | Eigenschaftsuntersuchung bei Wasser und Natriumchloridlösungen verschiedener Konzentration | Vorbereitend werden gemäß Anleitung die drei Natriumchlorid-Lösungen angesetzt. In einem Erlemmeyerkolben werden jeweil Wasser und die drei Salzlösungen nacheinander über dem Gasbrenner zum Sieden gebracht. Temperaturmessung erfolgt dabei über 5min alle 30 Sekunden. | Lehrer-/ Schülerversuch | ||
Bestimmung des Verschmutzungsgrades von Wasser | Erfassung oxidierbarer Stoffe als Permanganatzahl | Vorbereitend werden gemäß Anleitung die Kaliumpermanganat-Maßlösung und die Oxalsäure-Maßlösung zubereitet. Man versetzt die Wasserprobe nach Angaben mit etwas Schwefelsäure, mit der Kaliumpermanganat-Maßlösung und 2 Siedesteinchen. Die Lösung wird - mit Uhrglas bedeckt - 10 Minutenh lang bei kleiner Flamme gekocht. Nach Zugabe der Oxalsäure-Lösung in das heiße Gemisch titriert man wie beschrieben mit Kaliumpermanganat-Maßlösung bis zur leichten Rosafärbung. | Lehrer-/ Schülerversuch | Kaliumpermanganat, Oxalsäure-Dihydrat, Schwefelsäure (konz. w: >15%) | |
Stereospezifität der Glucose-Oxidase | Katalysierte Oxidation (nur) von D-Glucose | Vorbereitend werden gemäß Anleitung die Lösungen in den benötigten Konzentrationen bereit gestellt. Reagenzglasversuch: D-Glucose-Lösung wird mit etwas Gucose-Oxidase-Lösung versetzt. Nach 5min Reaktionszeit tropft man zum Nachweis des entstandenen Wasserstoffperoxids Schwefelsäure und Titanylsulfat-Lösung zu. Der Versuchsansatz wird mit L-Glucose wiederholt. Zum Nachweis der im Zwischenschritt entstehenden Gluconsäure gibt man zu einer alkalischen D-Glucose-Lösung etwas Universalindikator und tropft dann Glucose-Oxidase-Lösung zu. | Lehrer-/ Schülerversuch SII | Natronlauge (Maßlösung c= 0,1 mol/L), Universalindikator, flüssig (Skala pH 4-10; enth. Ethanol), Schwefelsäure (verd. w=____% (5-15%)), Titanylsulfat-Hydrat, Salzsäure (verd. w=____% (<10%)) | |
Reaktion von Trifluoressigsäureethylester mit Natriumethanolat, 4-DMAP und Natriumhydroxid | Vergleich von Reaktionsabläufen | Vorbereitend werden gemäß Anleitung die Lösungen von Natriumethanolat, von 4-DMAP und von Natriumhydroxid, ebenso die ethanolische Thymolphthalein-Indikator-Lösung. A) Man legt wie beschrieben Natriumethanolat-Lösung vor, tropft Indikator-Lösung zu, verschließt mit dem Silikonstopfen, der zwei Edelstahlelektroden und die mit Trifluoressigsäureethylester befüllte Spritze trägt und erwärmt unter Rühren auf 60 °C. An die Elektroden schaltet man eine 6-V-Wechselspannung und misst permanent die Stromstärke in mA. Nach 1 min drückt man den Inhalt der Spritze in die Reaktionslösung und misst kontinuierlich weiter. B) In analoger Versuchsdurchführung - allerdings ohne Zusatz der Indikator-Lösung nimmt man bei der Reaktion von Trifluoressigsäureethyester mit 4-DMAP eine Stromstärkenmessung in mikroAmpere vor (Zusätzlich Blindprobe mit reinem Ethanol anstelle von 4-DMAP. C) In analoger Versuchsdurchführung lässt man Trifluoressigsäureethyester mit Natriumhydroxid-Lösung reagieren. | Lehrerversuch | 4-(Dimethylamino)pyridin, Ethyltrifluoracetat, Natriumethylat, Ethanol (absolut), Natriumhydroxid (Plätzchen) | |
Quantitative Effekte bei pH-Änderung von Eiweiß-Lösungen | Eiweißfällung in Abhängigkeit vom pH-Wert | Vorbereitend werden gemäß Anleitung durch unterschiedliche Mischungen von Dinatriumhydrogenphosphat- und Citronensäure-Maßlösungen Citrat-Phosphat-Pufferlösungen mit pH=3, pH=5 und pH=7 bereitgestellt. In drei Rggl. werden zu 2ml Fleischsaft 5ml der jeweiligen Puffer gegeben. Man tropft der pH5-Lösung Ethanol bis zum Entstehen einer leichten Trübung zu und zählt die Tropfen. Die gleiche Tropfenzahl wird dann den beiden anderen Ansätzen zugesetzt. Man vergleicht die Proben nach einigen Minuten. Mit einer Eiklar-Lösung wird der Versuch wiederholt. | Lehrer-/ Schülerversuch | Citronensäure-Monohydrat, Ethanol (ca. 96 %ig) | |
Reaktionslenkung durch Enzyme | Umsetzung von Glucose mit Glucose-Oxisase und Glucose Isomerase | Vorbereitend werden gemäß Anleitung eine Glucose-Lösung, zusätzlich eine alkalische Glucose-Lösung, die Cofaktor-Lösung, die Nachweisreagenz-und die Enzym-Lösungen bereit gestellt. A) Zu drei Rggl. mit alkalischer Glucose- und Cofaktor-Lösung gibt man zum ersten Glucose-Isomerase-Lösung und zum zweiten Glucose-Oxidase-Lösung. Das Dritte bleibt als Blindprobe. Nach 5min gibt man Selendioxid zu allen drei Ansätzen und erwärmt für 10min im Wasserbad. B) Alkalische Glucose-Lösung wird nach Anleitung mit etwas Universalindikator und wenig Glucose-Oxidase-Lösung versetzt. Die Indikatorfärbung wird über 10min beobachtet. C) Glucose-Lösung wird mit wenig Glucose-Oxidase-Lösung versetzt. Nach 5min tropft man Schwefelsäure und Titanylsulfat-Lösung zu. | Lehrer-/ Schülerversuch | Natronlauge (verd. w: <2%), Salzsäure (verd. w=____% (<10%)), Schwefelsäure (konz. w: >15%), Universalindikator, flüssig (Skala pH 4-10; enth. Ethanol), Selendioxid, Titanylsulfat-Hydrat |
Seite 109 von 124, zeige 20 Einträge von insgesamt 2463 , beginnend mit Eintrag 2161, endend mit 2180