Experimente der Kategorie "Elektrochemie"
Name | Kurzbeschreibung | Beschreibung | Typ | Gefahrstoffe | |
---|---|---|---|---|---|
Spannungsreihe | Spannungsmessung bei Verwendung unterschiedlicher Metallelektroden | Gemäß Anleitung wird der Stromkreis zusammengebaut und der Glasbecher mit Natriumchlorid-Lösung befüllt. Man taucht das erste Elektrodenpaar in die Lösung und misst die Spannung. Das Experiment wird mit allen anderen Elektrodenkombinationen wiederholt. | Lehrer-/ Schülerversuch | ||
Spannungsreihe der Metalle | Arbeit auf der Zellkulturplatte | Gemäß Anleitung befüllt man fünf Kammern der Platte jeweils mit einer der metallsalz-Lösungen, die sechste in der Mitte mit Kaliumnitrat-Lösung. Durch Einlegen der Metallstreifen in die jeweilige Salzlösung bereitet man die Halbzellen vor. Von jeder Halbzelle führt ein mit Kaliumnitrat-Lösung getränktes Kerzendochtstück in die zentrale Kaliumnitrat-Mulde. Nun misst man mit einem Digitalmultimeter wie beschrieben die zwischen den fünf Halbzellen anliegenden Spannungen. | Lehrer-/ Schülerversuch | Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Eisen(II)-sulfat-Heptahydrat, Silbernitrat-Lösung (verdünnt, w=____% (<5%)) | |
Spannungsreihe der Nichtmetalle | Redoxpotential-Messung mit Bromid und Iodid | Gemäß angegebenem Schema befüllt man drei Vertiefungen einer Zellkulturplatte mit Kaliumiodid-Lösung, mit Kaliumchlorid-Lösung und mit Bromwasser. Ein Dochtstück oder Filterpapierstreifen wird als Salzbrücke zwischen den Mulden eingelegt. Mittels Bleistiftminen als Grafitelektroden misst man mit einem Digitalmultimeter die Spannung zwischen der Brom- und der Iod-Halbzelle. | Lehrer-/ Schülerversuch | Bromwasser (verd. (w: 1-5%)) | |
Standardpotential bei Zink und bei Kupfer | Messung in einer dreiteiligen Petrischale | Die Kammern der Petrischale werden 1) mit 1-molarer Kupfersulfat-Lösung, 2) mit 1-molarer Zinksulfat-Lösung sowie 3) mit 1-molarer Salzsäure befüllt. Ein Stück Magnesiumband sorgt in der Salzsäure für stetige Wasserstoffentwicklung. Als Elektrode der Wasserstoffhalbzelle wird eine Platindraht, bei der Kupferhalbzelle ein Stück Kupferdraht und bei der Zinkhalbzelle ein Zinkdraht eingelegt. Mit Kaliumnitrat-Lösung getränkte Dochtstücke oder Filterpapierstreifen werden als Salzbrücke benutzt. Mit einem Digitalmultimeter misst man die jeweiligen Spannungen gegenüber der Wasserstoffelektrode. | Lehrer-/ Schülerversuch | Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Salzsäure (Maßlösung c= 1 mol/L) | |
Standardpotentiale galvanischer Elemente | Kupfer-, Zink- und Eisen-Halbzellen kombiniert mit einer Standard-Wasserstoff-Halbzelle | Vorbereitend stellt man 1-molare Lösungen von Kupfer(II)-, Zink(II)- und Eisen(II)-sulfat her. In Bechergläsern werden die drei Ionenlösungen nach Anleitung mit den entsprechenden Plattenelektroden aus Kupfer, Zink bzw. Eisen bestückt. Für die Standard-Wasserstoff-Halbzelle wird ein Stück Magnesiumband in eine 1-molare-Salzsäure-Lösung gegeben, die mit einer Platinelektrode bestückt ist. Ein mit Kaliumnitrat-Lösung getränkter Filterpapierstreifen verbindet jeweils eine Halbzelle mit der Standard-Wasserstoff-Halbzelle. | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Pentahydrat, Zinksulfat-Heptahydrat, Eisen(II)-sulfat-Heptahydrat, Kaliumnitrat, Salzsäure (Maßlösung c= 1 mol/L) | |
Starke, schwache und Nicht-Elektrolyte | Stromstärkemessung mit der Addestation | Eine 1-molare Aluminiumchlorid-Lösung wird im Glasbecher bereit gestellt und die Messanordnung mit den Kupferelektroden gemäß Anleitung zusammengebaut. Man schließt den Stromstärkesensor an den PC an, schaltet das Oszilloskop ein und misst die Stromstärke. In gleicher Weise verfährt man mit den anderen Lösungen. | Lehrer-/ Schülerversuch | Aluminiumchlorid-Hexahydrat, Calciumchlorid-Hexahydrat, Ethanol (absolut), Citronensäure-Monohydrat | |
Synthese und Elektrolyse von Zinkiodid | Zink/Iod-Zelle als galvanisches Element | A In einem Becherglas wird gemäß Anleitung etwas klein geriebenes Iod in Wasser und Ethanol gelöst. Man setzt Zinkpulver hinzu und verrührt, bis die Lösung farblos geworden ist. B Man filtriert die Lösung und gibt sie in eine Petrischale, die in der Mitte durch einen Filterpapierstreifen (Ionenbrücke) geteilt ist. Auf beiden Seiten werden Elektroden in die Lösung gelegt. Mit einer geeigneten Batterie wird wie angegeben eine Gleichspannung angelegt und der Ladevorgang gestartet. C Nach einigen Minuten tauscht man die Gleichspannungsquelle gegen einen Verbraucher ( Motor .. LED) aus. | Lehrer-/ Schülerversuch | Zink (Pulver, nicht stabilisiert), Iod, Ethanol (ca. 96 %ig) | |
Überspannung | Tatsächliche Zersetzungspannung vs. berechnete Leerlaufspanung | Ein Becherglas wird mit 0,5-molarer Schwefelsäure bzw. 1-molarer Natronlauge befüllt und mit zwei Platinelektroden ausgestattet. Es wird eine Gleichspannung angelegt, die unter Messung der Stromstärke gemäß Anleitung stufenweise bis zur einsetzenden elektrolytischen Zersetzungsreaktion hochgefahren wird. | Lehrer-/ Schülerversuch | Schwefelsäure (Maßlösung c= 0,5 mol/L), Natronlauge (Maßlösung c= 1 mol/L) | |
Untersuchung der elektrischen Leitfähigkeit von Flüssigkeiten und Lösungen | Unterscheidung Elektrolyte - Nichtelektrolyte | Gemäß Anleitung wird der Glastrog mit den Nickelelektroden bestückt und in die elektrische Messvorrichtung eingebaut. Die erste Befüllung erfolgt mit entionisiertem Wasser bei einer angelegten 12V-Wechselspannung. Dann tropft man 2ml verd. Salzsäure hinzu, verrührt und beobachtet die Veränderung. Nach dem Entleeren und Trocknen des Troges untersucht man wie angegeben in gleicher Weise die anderen Flüssigkeiten bzw. die Feststoffe durch Auflösen in der Trogflüssigkeit. | Lehrer-/ Schülerversuch | Ethanol (Brennspiritus) (mit 2-Butanon u.a. vergällt), Benzin (Sdb.: 80-100 °C, Benzolgehalt < 0,1%), Natronlauge (verd. w= 10%), Salzsäure (verd. w=____% (<10%)), Schwefelsäure (verd. w=____% (5-15%)) | |
Wasserstoff- Sauerstoff-Brennstoffzelle (Modellversuch) | Einsatz einer neuartigen Aktickohleelektrode | Vorbereitend werden gemäß Anleitung zwei poröse Aktivkohleelektroden angefertigt. Man befüllt ein Becherglas mit 0,5-molarer Schwefelsäure, stellt die beiden posrösen Aktivkohleelektroden hinein und lädt das System mittels Niederspannungsnetzgerät bei 3V Ladespannung auf. Ein weiteres Becherglas mit einer Ag/AgCl-Elektrode in 1-molarer Kaliumchlorid-Lösung wird zur Bestimmung der Elektrodenpotential der Brennstoffzelle bereit gestellt. Zur Messung sind die Lösung über ein Kaliumchlorid-getränktes Filterpapier als Stromschlüssel und die Elektroden über ein Spannungsmessgerät mit der Brennstoffzelle verbunden. | Lehrer-/ Schülerversuch | Schwefelsäure (Maßlösung c= 0,5 mol/L) | |
Wasserstoffnachweis durch Silberzementation | Reaktionen zwischen der mit Lithium-Ionen intercalierten Graphitelektrode und Wasser | Vorbereitend wird die Elektrolytlösung wie angegeben angemischt. Gemäß Anleitung und Darstellung wird eine TIC-TAC(TM)-Dose mit der Elektrolytlösung befüllt und mit den Elektroden bestückt. Die beiden Graphitelektroden werden zur Aufladung des Systems für 5 min mit 4,5V-Gleichspannung beschaltet. Man gibt die als -Pol geschaltete Elektrode für wenige Minuten in ein Rggl. mit Wasser und führt danach erneut den Ladevorgang aus - unter Austausch der beiden Elektroden. Dann wird die mit Lithium-Ionen intercalierte Graphitmine in eine Rggl. mit Silbernitrat-Lösung gestellt. | Lehrer-/ Schülerversuch | Propylencarbonat, Lithiumperchlorat, Silbernitrat-Lösung (verdünnt, w=____% (<5%)) | |
Wasserzersetzung mit Medizintechnik | Getrenntes Auffangen von Wasserstoff und Sauerstoff | Gemäß Beschreibung und Skizze wird die Zersetzungsapparatur zusammengestellt: Zwei Kanülen werden durch Abschneiden der Spitzen entschärft und leicht gewickelt, so dass sie als Elektroden dienen können (alternativ: Platindraht). Aus zwei 20ml-Spritzen werden die Stempel entfernt. Eine weitere Spritze wird zur Gasentnahme bereitgehalten. Das Elektrolysegefäß wird wie angegeben mit angesäuertem Wasser gefüllt. Man stellt die Zersetzungsapparatur hinein und legt an die Elektroden mit Netzteil oder 9V-Batterie eine Gleichspannung an. Die bei der Elektrolyse gesammelten Gase werden einzeln in die dritte Spritze und dann in ein Rggl. überführt. Man macht mit Wasserstoff eine Knallgasprobe und mit Sauerstoff eine Glimmspanprobe. | Lehrer-/ Schülerversuch | Schwefelsäure (verd. w=____% (5-15%)), Sauerstoff (freies Gas), Wasserstoff (freies Gas) | |
Zink und Iod freisetzen | Elektrolyse einer Zinkiodid-Lösung | U-Rohr-Versuch: In die Krümmung bringt man als Seitentrenner einen Bausch Glaswolle oder Watte ein. In beide Schenkel wird eine konz. Zinkiodid-Lösung (alternativ: Zinkbromid-Lösung) gefüllt. Zwei Kohleelektroden werden - ca. 3 cm eintauchend - in die Lösung eingebracht und mit einer Gleichstromquelle verbunden. Man elektrolysiert bei ca. 10 V wenige Minuten lang. | Lehrer-/ Schülerversuch | Zinkiodid, Zinkbromid, Iod | |
Zink-Iod-Batterie | Zinkiodid-Lösung wird zur galvanischen Zelle. | Mittels Propellergenerator wird eine Zinkiodid-Lösung kurzzeitig elektrolysiert. Das an den Kohleelektroden entstehende Zink und das Iod machen den Aufbau zu einer galvanischen Zelle. Alternativ kann man Zinkchlorid oder Zinkbromid zur Reaktion bringen. | Lehrer-/ Schülerversuch | Zinkiodid, Zinkchlorid, Zinkbromid | |
Zink-Luft-Batterie | Eine Zink/Kohle-Zelle erzeugt Strom. | Ein Zink- und ein Kohlestab tauchen in halbkonzentrierte Kalilauge. Die Spannung zwischen den Polen wird gemessen. | Lehrer-/ Schülerversuch | Kalilauge (konz. w=____% (5-25%)) | |
Zink-Silber-Akkumulator | Lade- und Entladevorgang an einer galvanischen Zelle | Ein Becherglas wird mit verd. Kaliumhydroxid-Lösung befüllt und mit einem Elektrodenhalter versehen, der eine Zink- und eine Silber-Elektrode trägt. Gemäß Anleitung wird die Zelle zunächst über eine Netzgerät aufgeladen, anschließend wird das Netzteil durch einen Kleinmotor mit Propeller ausgetauscht. | Lehrer-/ Schülerversuch | Kalilauge (konz. w=____% (5-25%)) | |
Zinkbaum in der Petrischale | Elektrochemische Metallabscheidung | Eine Petrischale wird mit Zinkiodid-Lösung gefüllt. Zwei Büroklammern werden wie beschrieben aufgebogen und als Elektroden links und rechts in die Lösung gebracht, wobei deren zwei Enden gemäß Anleitung und Skizze mit einer 4,5V-Fachbatterie verbunden werden. | Lehrer-/ Schülerversuch | Zinkiodid, Iod | |
Zitronenbatterie | Primärelement mit Kupfer- und Zink-Elektroden | Vorbereitend wird die Zitrone gemäß Anleitung mit zwei breiten Schlitzen in der Schale versehen. Man steckt eine Kupfer- und eine Zink-Elektrode in die Schlitze, ohne dass sich diese berühren. Nach Anschließen der Kabel an die Elektroden wird die Spannung gemessen und evtl. ein Kleinmotor mit Propeller angeschlossen. | Lehrer-/ Schülerversuch | ||
Zusammenhang zwischen Spannung und Stromstärke bei Leitungsvorgängen in Flüssigkeiten | Untersuchungen an einer Kupfer(II)-sulfat-Lösung | Gemäß Anleitung werden zwei Kupferplatten mit max. Abstand im Rillentrog in eine Messvorrichtung (Stromkreis) eingebaut. Man befüllt den Rillentrog zu halber Höhe mit dest. Wasser und löst einen halben Löffelspatel Kupfer(II)-sulfat darin auf. Wie beschrieben wird unter Variation der Spannung, des Plattenabstands und der Kupfer(II)-sulfat-Konzentration die jeweilige Stromstärke gemessen. | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Pentahydrat, Kupfer(II)-sulfat-Lösung (verd., (w: <25%)) |
Seite 9 von 9, zeige 19 Einträge von insgesamt 179 , beginnend mit Eintrag 161, endend mit 179