Experimente der Kategorie "Innovative Materialien"
Name | Kurzbeschreibung | Beschreibung | Typ | Gefahrstoffe | |
---|---|---|---|---|---|
Versuche mit einer Nano-Gold-Suspension | Änderung der kolloidalen Dispergierung von Gold-Nanopartikeln | A Einer Nano-Gold-Suspension wird mittels Pipette etwas Natriumchloridlösung zugefügt. Es kommt zur Agglomeration der Partikel, die mit einer Farbveränderung verbunden ist. Beim Filtrieren werden die meisten Agglomerate am Filterpapier adsorbiert. B Zu einer frisch bereiteten Nano-Gold-Suspension wird etwas verdünnte Salzsäure gegeben. Es kommt zur Agglomeration und zu einer Farbveränderung. Der Vorgang kann durch Verwendung einer Mikrowelle (120W / 1 min) beschleunigt werden. Die Agglomerate können durch Filtration abgetrennt werden. | Lehrer-/ Schülerversuch | Salzsäure (Maßlösung c= 0,1 mol/L) | |
Windeln als High-Tech-Produkt | Quellfähigkeit des Superabsorbers aus Natriumpolyacrylat | A Probestücke von Papiertaschentuch und Windel werden in einer Schale mit einer definierten Portion Wasser begossen. Man Versucht, das aufgenommene Wasser aus beiden Materialien herauszudrücken. B In einem trockenen Rggl. gibt man zu einer kleinen Portion Superabsorber nach und nach soviel Wasser, wie das Material unter Gelbildung aufnehmen kann. C In vier Rggl. werden jeweils 2 Spatelportionen Superabsorber mit Wasser, mit Spiritus, mit Salzsäure und mit Natronlauge versetzt. Das Quellverhalten wird verglichen. | Lehrer-/ Schülerversuch | Ethanol (Brennspiritus) (mit 2-Butanon u.a. vergällt), Salzsäure (w=____% (10-25%)), Natronlauge (Maßlösung c= 1 mol/L) | |
Herstellung von Chitosan aus Chitin | Stickstoffbestimmung im Chitosan | Chitinflocken werden im Zweihals-Rundkolben gemäß Anleitung mit Wasser zum Quellen gebracht. Anschließend setzt man die Natronlauge hinzu, verdrängt die Luft im Kolben mit Stickstoff und verschließt den Kolben wie angegeben luftdicht. Dann kocht man unter Rückfluss eine Stunde lang, lässt abkühlen, setzt die angegebene Menge Wasser hinzu und lässt über Nacht im Abzug stehen. Dann wird mittels Büchnertrichter abgesaugt, gewaschen und wie beschrieben getrocknet. Zur Stickstoffbestimmung im trockenen Chitosan, löst man dieses gemäß Anleitung in Essigsäure, säuert mit Salzsäure weiter an und gibt zügig die vorbereitete Natriumnitrit-Lösung hinzu. Das sich bildende Gas wird pneumatisch im Messzylinder aufgefangen. | Lehrer-/ Schülerversuch | Natronlauge (konz. w= 32%), Natriumnitrit, Salzsäure (konz. (w: >25%)), Essigsäure (w=____% (10-25%)) | |
Nanosilber als Bakterienkiller | Vergleichende mikrobiologische Untersuchung mit Silber-Nanopartikeln | Dest. Wasser, stark verd. Silbernitrat-Lsg. und eine Nanosilber-Suspension werden mit einigen Tropfen einer Bakterienlösung (Mikroorganismenkultur Micrococcus luteus) gut durchmischt. Die drei Lösungen werden jeweils mit sterilem Glasspatel auf Agarplatten aufgebracht und bei 37 °C über Nacht inkubiert. | Lehrer-/ Schülerversuch | Ethanol (ca. 96 %ig), Silbernitrat-Lösung (verdünnt, w=____% (<5%)) | |
Superhydrophobe Glasoberfläche | Funktionalisierung durch Reaktion mit Chlorsilanen | Die Oberfläche eines maschinengespült sauberen Objekträgers wird im linken Viertel mit Tesafilm abgeklebt. In ein Zentrifugenröhrchen PP (50 ml) mit Stehrand gibt man im Abzug einen Tropfen Trichlormethylsilan. Dann stellt man den Objetträger - mit der Tesafilmseite nach oben - hinein, verschraubt und lässt ca. 20min lang einwirken. Nun nimmt man den Objektträger heraus, entfernt den Tesastreifen. Zur Prüfung der Funktionalität setzt man einen Tropfen dest. Wasser auf die hydrophobierte Fläche und lässt ihn langsam Richtung unbehandelte Fläche rollen. | Lehrerversuch | Trichlormethylsilan | |
Polyanilin-Schicht auf verspiegeltem FTO-Glas | Bau eines elektrochromen, selbstabblendbaren Spiegels | Die PANI-Schicht auf dem verspiegelte FTO-Glas wird zunächst gemäß Anleitung in der Elektrolyt-Lösung als -Pol geschaltet und zum Leukoemeraldin-Salz entfärbt. Die Spiegelwirkung des Glases wird getestet. Danach färbt man die elektrochrome Schicht durch Umpolen der Anordnung zu einer dunklen Pernigranilin-Schicht um und prüft die stark gedämpfte Spiegelwirkung. Durch erneutes Umpolen wird die elektrochrome Schicht wieder zum transparenten Leukoemeraldin-Salz umgewandelt. | Lehrer-/ Schülerversuch | ||
Silber-Nanopartikel aus dem Nanoreaktor | Nutzung des Leidenfrost-Phänomens | Ein Heizrührer wird gemäß Anleitung zu einem Leidenfrost-Reaktor umgebaut. Die Arbeit mit dieser Apparatur erfolgt bei sehr hohen Temperaturen (350-400 °C). Die benötigten Lösungen stellt man in der angegebenen Konzentration bereit. Man erzeugt wie beschrieben zunächst mit dest. Wasser einen Leidenfrost-Tropfen, anschließend mit stark verdünnter Natriumcitrat-Lösung. Diesem Tropfen wird dann die stark verdünnte Silbernitrat-Lösung zugesetzt. | Lehrer-/ Schülerversuch SII | Silbernitrat-Lösung (Maßlösung, 0,1N) | |
Nano-Silber aus Silbernitrat und Natriumcitrat | Gewinnung der Nanopartikel | Ein Reagenzglas mit Silbernitrat-Lösung wird gemäß Anleitung in ein Becherglas mit Wasser gestellt, das zum Sieden erhitzt wird. Dann wird Natriumcitrat-Lösung hinzu pipettiert. | Lehrer-/ Schülerversuch | Silbernitrat-Lösung (verdünnt, w=____% (<5%)) | |
Nanopartikel in Sonnencreme | Isolierung mineralischer UV-Filter aus Sonnencreme | Eine Portion Sonnencreme wird bei 120 °C getrocknet (Trockenschrank o. Ofen). Danach erhitzt man 5 min lang das Material mit der Brennerflamme in einen Porzellantiegel stark von oben und von der Seite. Das calcinierte Pulver nimmt man nach dem Abkühlen mit wenig verd. Salzsäure auf und filtriert. Sowohl das Filtrat als auch der Filterrückstand stehen für weitere Versuche zur Verfügung. | Lehrer-/ Schülerversuch | Salzsäure (verd. w=____% (<10%)) | |
Dentalabdruckmischung aus Alginaten | Herstellung einer Formmasse | Gemäß angegebener Rezeptur und Anleitung mischt man die 7 Komponenten zu einem Dentalabdruckpulver. Die Formmasse wird dann wie beschrieben im Mörser durch kräftiges Verrühren mit Wasser angemischt und zur Abformung eines Vampirgebisses genutzt. | Lehrerversuch / nicht für Lehrerinnen i.g.A. | Kieselgur, tri-Natriumphosphat-12-Hydrat, Phenolphthalein, Kaliumhexafluorotitanat(IV) | |
Synthese eines Kunststoffkomposits mit Al2O3-Nanoadditiven | Modifizierung der Stoffeigenschaften eines Kunstharzes | Gemäß Anleitung gibt man unter dem Abzug Komponente 1 des Polyesterharzes in einen Teelichtbecher und tropft unter Rühren Komponente 2 hinzu. In einem 2. Ansatz wird der Komponente 1 wie beschrieben eine Portion Aluminiumoxid-Nanopartikel hinzugegeben, bevor die Komponente 2 unter Rühren zugetropft wird. Die Verharzung läuft unter Wärmeentwicklung innerhalb von 30 min. Man lässt die KS-Körper über Nacht aushärten, entfernt die Alu-Becher und vergleicht später die Eigenschaften Härte bzw. Bruchfestigkeit wie beschrieben mit einem Kugel-Aufprall-Experiment. In ähnlicher Vorgehensweise lassen sich die Wirkungen von Aluminiumoxid-Partikeln unterschiedlicher Größe (Makro-, Mikro- und Nanopartikel) vergleichen. | Lehrer-/ Schülerversuch | Polyesterharz PRESTO Kombibox (styrolreduziert (w= unter 10%)) | |
Modellhafter Versuch zum Auerlicht | Luminiszenz mit Yttrium- und Cer-Verbindungen | Gemäß Anleitung löst man in einem Rggl. Magnesiumoxid in verd. Salpetersäure, in einem zweiten Rggl. Magnesiumoxid, Yttrium(III)-oxid und Cer(III)-nitrat ebenfalls in verd. Salpetersäure. Kleine Baumwolltuchstücke werden mittels Pinzette in die jeweilige Lösung getaucht. Man trocknet sie über Nacht an der Luft oder im Trockenschrank. Die so präparierten Tuchstückchen hält man in die rauschende Flamme des Gasbrenners. | Lehrer-/ Schülerversuch | Cer(III)-nitrat, Salpetersäure (verd. w=____% (5-20%)) | |
Bromierung von meso-Tetraphenylporphyrinatokupfer(II) | Elektrophile aromatische Substitution mit Abscheidung von Bromwasserstoff | Gemäß Anleitung und graphischer Darstellung baut man eine U-Rohr-Apparatur zusammen. Das U-Rohr selbst wird wie angegeben mit m-TPP-Kupfer-Komplex und einer Brom-Lösung in Dichlormethan befüllt, das angeschlossene Rggl. mit 40 ml salpetersaurer Silbernitrat-Lösung. Dann bläst man mit dem Handgebläse Luft durch die Apparatur. | Lehrerversuch | Brom, Dichlormethan, Silbernitrat, Salpetersäure (Maßlösung c= 1 mol/L), Bromwasserstoff, wasserfrei (freies Gas) | |
Nano-Gold aus Tetrachloridogold(III)-säure und Natriumcitrat | Farbdifferenzierung kleinerer und größerer Nanopartikel | In ein Becherglas mit Wasser, das zum Kochen gebracht wurde, stellt man zwei Reagenzgläser mit den vorbereiteten Lösungen gemäß Konzentrationstabelle und beobachtet den Farbverlauf. Anschließend wiederholt man den Versuch und setzt diesmal beiden Ansätzen einige Körnchen Natriumchlorid zu. | Lehrer-/ Schülerversuch | Tetrachloridogold(III)-säure-Hydrat | |
Zinkoxid-Nanopartikel als Farbkiller | Photokatalytische Zersetzung von Rote-Beete-Fabstoff | In vier Schnappdeckelgläsern gibt man stark verdünnten Rote-Beete-Saft. Zwei Ansätze werden mit einer Zinkoxid-Nanopartikel-Suspension versetzt. Man beobachtet die Farbveränderung. Dann wird eine Ansatz mit und ein Ansatz ohne Nano-ZnO 30 min lang einer UV-Bestrahlung ausgesetzt. Man vegleicht die vier Proben. | Lehrer-/ Schülerversuch | Zinkoxid, Ethanol (ca. 96 %ig) | |
Protonierung von meso-Tetraphenylporphyrin | Behandlung von m-TPP in Dichlormethan mittels Perchlorsäure | Man löst im großen Rggl. wie beschrieben m-TPP in Dichlormethan und gibt dann unter Schütteln Perchlorsäure hinzu. Zur Entsorgung rührt man die Reaktionslösung später in eine warme gesättigte Natriumthiosulfat-Lösung ein. | Lehrer-/ Schülerversuch | Dichlormethan, Perchlorsäure (verdünnt, w: ca.10%) | |
Fluoreszenz von Porphyrinen | Eigenschaftsunterschiede bei mTPP, mT(o-Cl)PP und mT(p-OH)PP | Man löst in Rggl. gemäß Anleitung meso-Tetraphenylporphyrin, meso-Tetra(o-Chlor)phenylporphyrin in wenig Dichlormethan und meso-Tetra(p-Hydroxy)phenylporphyrin in etwas Aceton. Man schüttelt jeweils gut durch und betrachtet die drei Proben im abgedunkelten Raum im UV-Licht. | Lehrer-/ Schülerversuch SII | Dichlormethan, Aceton | |
Gold-Nanopartikel aus der Mikrowelle II | Reduktion von Tetrachloro(III)-goldsäure mit Glucose bzw. mit Natriumborhydrid | Man löst jeweils 1 Spsp. Glucose bzw. Natriumborhydrid in 50ml Wasser und gibt nach Rezeptur wenig Tetrachlorogoldsäure hinzu. Die Reaktion mit Natriumborhydrid setzt unter Wasserstoffentwicklung unmittelbar ein und lässt eine zunächst dunkelbraune, dann schwarze Nano-Gold-Suspension entstehen. Die Reaktion mit Glucose wird erst im Mikrowellengerät (120W / 10min) ausgelöst. | Lehrer-/ Schülerversuch | Tetrachloridogold(III)-säure-Hydrat, Natriumborhydrid | |
Farbwechsel eines mit Polyanilin beschichteten FTO-Glases | Reaktionen in saurem und alkalischem Milieu | Man stellt gemäß Anleitung Natronlauge und Schwefelsäure in zwei KS-Gefäßen bereit, ein drittes Gefäß wird mit dest. Wasser befüllt. Ein mit PANI beschichtetes FTO-Glas wird zunächst in die Natronlauge getaucht, danach in das dest. Wasser und anschließend in die Schwefelsäure. In gleicher Weise verfährt man mit einem FTO-Glas, das mit dem gelben Leukoemeraldin Salz beschichtet ist. | Lehrer-/ Schülerversuch | Natronlauge (Maßlösung c= 1 mol/L), Schwefelsäure (verd. w=____% (5-15%)) | |
Nano-Titandioxid in Sonnencreme | Indirekter Nachweis von Titandioxid-Nanopartikeln | Reagenzglasversuch: Die durch Calzinieren gewonnene Pigmentmasse aus Sonnencreme wird sauer aufgeschlossen: Dazu erhitzt man sie im Abzug mit der fünffachen Portion Kaliumhydrogensulfat kräftig mit dem Gasbrenner, bis die Masse schmilzt und weiße Dämpfe entweichen. Nach dem Erstarren und Abkühlen setzt man verd. Schwefelsäure hinzu und erhitzt erneut zum Sieden, bis sich die Masse auflöst. Zum Nachweis der Titanionen als gelb-orangenen Titanperoxo-Komplex tropft man eine 3%ige Wasserstoffperoxid-Lösung hinzu. | Lehrer-/ Schülerversuch | Kaliumhydrogensulfat, Schwefelsäure (verd. w=____% (5-15%)), Titanylsulfat-Hydrat, Wasserstoffperoxid-Lösung (wässrig (w=3%)) |
Seite 1 von 2, zeige 20 Einträge von insgesamt 35 , beginnend mit Eintrag 1, endend mit 20