Experimente der Kategorie "Elektrochemie"

NameKurzbeschreibungBeschreibungTypGefahrstoffe
CfL: Elektrolyse in einer Kartoffel Elektrolyse einer Kartoffel als Elektrolytmedium mit Kupferelektroden Zwei Kupferdrähte werden im Abstand von ca. 1 cm, mindestens 2 cm tief in die Kartoffelhälfte gesteckt. Die Drähte und die Spannungsquelle werden miteinander verbunden. Die Spannung wird auf mindestens 20 V hoch geregelt. Nun beobachtet man die Einstichstellen der Kupferdrähte. Um eine eventuell auftretende Gasentwicklung besser beobachten und untersuchen zu können, kann ein Tropfen Spülmittel-Lösung um den mit dem Minuspol der Spannungsquelle verbundenen Kupferdraht auf die Kartoffel gegeben werden. An die Schaumblasen kann ein brennender Holzspan gehalten werden. Zusätzlich sollte der pH-Wert um diese Elektrode mit Indikatorpapier oder sehr wenig Phenolphthalein-Lösung geprüft werden. An dem Kupferdraht in der Kartoffel, der mit dem Pluspol der Spannungsquelle verbunden ist, ist eine Farbveränderung beobachtbar. Der Kupferdraht wird aus der Kartoffel gezogen. In das Loch kann mit einem Magnesiastäbchen eingestochen und eine Flammenfärbeprobe durchgeführt werden. Lehrer-/ Schülerversuch Kupfer(II)-oxid (Pulver), Wasserstoff (freies Gas)
Bleiakkumulator (Modell) Redoxreaktionen beim Laden und Entladen Zwei Bleiplatten bzw. -bleche tauchen in einem Gefäß in etwa 30%ige Schwefelsäure. An der Oberfläche entsteht sofort eine Bleisulfat-Schicht. Die Platten sind für den Ladevorgang mit einer Gleichstromquelle (4,5 V) verbunden, zum Entladen mit einem Glühlämpchen oder Motor/ Rotor. Beim etwa 3-5-minütigen Ladevorgang wird das Bleisulfat zu Blei(IV)-oxid bzw. zu elementarem Blei umgesetzt. Lehrerversuch / nicht für Lehrerinnen i.g.A. Blei(II)-sulfat, Blei(IV)-oxid, Schwefelsäure (konz. w: >15%)
Daniell-Element mit zwei Halbzellen Elektrochemie mit Zink und Kupfer in ihren jeweiligen Salz-Lösungen Zwei Bechergläser, das eine mit 1-molarer Kupfer(II)-sulfat-Lösung, das andere mit Zink(II)-sulfat-Lösung, werden gemäß Beschreibung mit Elektrodenhaltern bestückt, die die jeweiligen Metallplatten tragen. Die beiden Buchsen werden über Kabel mit einem Propellermotor verbunden. Ein mit Kaliumnitrat-Lösung getränkter Papierstreifen dient als Salzbrücke zwischen den Bechergläsern. Lehrer-/ Schülerversuch Kupfer(II)-sulfat-Pentahydrat, Zinksulfat-Heptahydrat, Kaliumnitrat
Redoxpotenzial und Konzentration Einwirkung von Ammoniak in einer galvanischen Kupfer-Halbzelle Zwei Bechergläser, das eine mit 1-molarer Kupfer(II)-sulfat-Lösung, das andere bei gleicher Füllhöhe mit 1-molarer Schwefelsäure befüllt, werden über ein U-förmiges mit gesättigter Kaliumnitrat-Lösung befülltes Glasrohr als Stromschlüssel verbunden. Eine Kupfer-Elektrode taucht in das eine Becherglas, die Wasserstoffreferenzelektrode in das andere. Die Potentialveränderung der Kupfer-Halbzelle wird gemessen, während kontinuierlich Ammoniak-Lösung in die magnetgerührte Kupferionen-Lösung eingetropft wird. Lehrer-/ Schülerversuch Kupfer(II)-sulfat-Pentahydrat, Schwefelsäure (verd. w=____% (5-15%)), Kaliumnitrat, Ammoniak-Lösung (konz. w=_____ % (10-25%))
Messung von Standardpotenzialen Experimente mit der Wasserstoffreferenzelektrode Zwei Bechergläser, das eine mit 1-molarer Kupfer(II)-sulfat-Lösung, das andere bei gleicher Füllhöhe mit 1-molarer Salzsäure befüllt, werden über ein U-förmiges mit Kaliumnitrat-Lösung befülltes Glasrohr als Stromschlüssel verbunden. Eine Kupfer-Elektrode taucht in das eine Becherglas, die Wasserstoffreferenzelektrode in das andere. Das Standardpotential der Kupfer-Halbzelle wird gemessen. In gleicher Weise verfährt man mit einer Silber-, einer Zinn- und einer Zink-Halbzelle, wobei jeweils 1-molare Lösungen der jeweiligen Salze und entsprechende Metallelektroden verwendet werden. Lehrer-/ Schülerversuch Salzsäure (Maßlösung c= 1 mol/L), Kupfer(II)-sulfat-Pentahydrat, Silbernitrat, Zinn(II)-chlorid-Dihydrat, Zinksulfat-Monohydrat, Kaliumnitrat
Arbeiten mit der Wasserstoffreferenzelektrode Messung von Standardpotenzialen Zwei Bechergläser werden mit 1-molarer Kupfer(II)-sulfat-Lösung bzw. mit 1-molarer Salzsäure befüllt. Eine Cu-Elektrode taucht in die Kupfersalz-Lösung, eine Normal-Wasserstoffelektrode (HYDROFLEX [TM]) taucht in die Salzsäure. Die Bechergläser sind mit einem Stromschlüssel (Kaliumnitrat-Lösung) verbunden, die Elektroden über ein Spannungsmessgerät. Lehrer-/ Schülerversuch Kupfer(II)-sulfat-Lösung (verd., (w: <25%)), Salzsäure (Maßlösung c= 1 mol/L), Kaliumnitrat
Konzentrationsabhängigkeit von Redoxpotenzialen Messung des elektrochmischen Potentials einer Kupfer-Halbzelle bei Ammoniakzugabe Zwei Bechergläser werden mit 1-molarer Kupfer(II)-sulfat-Lösung bzw. mit 1-molarer Salzsäure befüllt. Eine Cu-Elektrode taucht in die Kupfersalz-Lösung, eine Normal-Wasserstoffelektrode (HYDROFLEX [TM]) taucht in die Salzsäure. Die Bechergläser sind mit einem Stromschlüssel (Kaliumnitrat-Lösung) verbunden, die Elektroden über ein Spannungsmessgerät. Während der Messung wird dem Becherglas mit der Kupfersalz-Lösung konz. Ammoniak-Lösung zugetropft. Lehrer-/ Schülerversuch Ammoniak-Lösung (konz. w=_____ % (10-25%))
CfL: Zink/Kupfer-Zelle mit Papier-Brücke Verbindung zweier Halbzellen mithilfe einer Elektrolytbrücke Zwei Bechergläser werden jeweils halb voll mit Kupfer(II)-sulfat-Lösung und Natriumsulfat-Lösung gefüllt. Das Kupferblech wird in das Becherglas mit der Kupfer(II)-sulfat-Lösung und das Zinkblech in die Natriumsulfat-Lösung gestellt. Beide Bechergläser werden dicht nebeneinander gestellt und die Bleche mit Hilfe des Kabelmaterials mit dem Voltmeter (ggf. dem Messmotor) verbunden. Anschließend wird ein etwa 10 cm langer, trockener Filterpapierstreifen mit je einem Ende in die beiden Bechergläser gehängt. Lehrer-/ Schülerversuch Kupfer(II)-sulfat-Lösung (verd., (w: <25%))
Silber im Nano-Format Elektrolytische Darstellung von Silber-Nanopartikeln Zwei Bechergläser werden hälftig mit stark verdünnter Silbernitrat-Lösung befüllt. In eines der Bechergläser montiert man mittels Krokodilklemmen zwei Silberdrähte, die tief in die Lösung eintauchen. (Die andere Portion dient als Vergleichslösung.) Die Silberdrähte werden über Kabel mit einer 9-V-Batterie verbunden. Man elektrolysiert unter Wechselspannung: Im 5-sec-Rhythmus wird 20mal die Polung batterieseitig getauscht. Anschließend werden zur Beobachtung des Tyndall-Effekts an einem dunklen Ort beide Gefäße mit einem Laserpointer seitlich durchstrahlt. Lehrer-/ Schülerversuch Silbernitrat-Lösung (verdünnt, w=____% (<5%))
CfL: Hittorf-Elektrolyse Elektrolyse einer Kupfersulfat-Lösung mit vertikalem Versuchsaufbau Zwei 23 cm lange Kupferkabel werden jeweils an beiden Enden 2 cm breit abisoliert. Anschließend wird je ein Ende der Kabel so halbkreisförmig umgebogen, dass es noch gerade in das 1er-Reagenzglas passt. Die gebogenen Enden werden um 90° nach oben geknickt. Eine der Elektroden wird so umgebogen, dass der abisolierte Teil 1 cm über dem Reagenzglasboden hängt. Die andere Elektrode soll ca. 3,5 cm über der unteren hängen. Anschließend wird so viel Kupfer(II)-sulfat-Lösung in das Reagenzglas gefüllt, dass die obere Elektrode gerade in die Lösung taucht. Die gesamte Konstruktion wird zur Kühlung in ein Becherglas mit Wasser gestellt und mit dem Gummi und der Wäscheklammer am Becherglas befestigt. Die Elektroden werden mit der Spannungsquelle verbunden und die Spannung auf mindestens 20 V hoch geregelt. Lehrer-/ Schülerversuch Kupfer(II)-sulfat-Lösung (verd., (w: <25%)), Wasserstoff (freies Gas)
CfL: „Die Zink/Iod-Batterie“ Anfertigen einer galvanischen Zelle mit Iod und Zink Zunächst schmirgelt man das Zinkblech an zwei Stellen blank. An einer wird das Kabel mit der Krokodilklemme angeschlossen, auf die andere das mit Kaliumnitrat getränkte und dreifach gefaltete Filterpapier gelegt. Nun gibt man einen Iodkristall mit einer Größe von ca. 5 x 5 mm auf das Filterpapier, verbindet das Zinkblech mit dem Minuspol und das Iod mit dem Pluspol des Leichtlaufelektromotors. Lehrer-/ Schülerversuch Iod
CfL: Die Zink-Iod-Batterie Wirkungsweise einer "sauerstofffreien" Batterie Zunächst schmirgelt man das Zinkblech an zwei Stellen blank. An einer wird das Kabel mit der Krokodilklemme angeschlossen, auf die andere das mit Kaliumnitrat getränkte und dreifach gefaltete Filterpapier gelegt. Nun gibt man ein Iodkristall mit einer Größe von ca. 5 x 5 mm auf das Filterpapier, verbindet das Zinkblech mit dem Minuspol und das Iod mit dem Pluspol des Mikromotors. Lehrer-/ Schülerversuch Iod
CfL: Zerlegen und Untersuchen einer frischen Zink/Luft-Batterie Isolierung der Bauteile Zunächst entfernt man den Aufkleber, der sich auf dem Pluspol befindet. Wie schon bei der Zink/Silberoxid-Knopfzelle wird der Metallmantel der Zelle an der Überlappung auf gekniffen und die beiden ineinander gepackten Becher werden voneinander getrennt. Die Flüssigkeit, die beim Öffnen der Zelle austritt, prüft man mit Unitest-Papier auf ihren pH-Wert. Lehrer-/ Schülerversuch Zink (Pulver, phlegmatisiert)
CfL: Zerlegen und Untersuchen einer frischen unbenutzten Zink-Luft-Knopfzelle Aufbau und die Inhaltsstoffe einer Zink-Luft-Knopfzelle Zunächst entfernt man den Aufkleber, der sich auf dem Pluspol befindet. Die schon bei der Zink-Silberoxid-Knopfzelle wird der Metallmantel der Zelle an der Überlappung aufgekniffen und die beiden ineinander gepackten Becher werden voneinander getrennt. Die Flüssigkeit, die beim Öffnen der Zelle austritt, prüft man mit Unitest-Papier auf ihren pH-Wert. Lehrer-/ Schülerversuch
CfL: Elektrolyse einer Natriumchlorid-Lösung Elektrolyse einer Natriumchlorid-Lösung mit Nägel-Elektroden in Spritzen Zum Auffangen der Reaktionsprodukte werden die Spritzen wie in Versuch: "CfL: Elektrolyse einer Natriumsulfat-Lösung" dargestellt präpariert. Beide Spritzen mit Elektrode werden in die Natriumchlorid-Lösung getaucht, um sie vollständig zu füllen und so am Becherglas befestigt, dass sie halb aus der Lösung ragen (Öffnung unten). Ist die Spritze, die mit dem Minuspol der Spannungsquelle verbunden ist, vollständig mit Gas gefüllt, wird sie mit einem Finger verschlossen, aus der Lösung genommen und das enthaltene Gas mittels Knallgasprobe auf Wasserstoff getestet. Anschließend wird sie wieder mit Natriumchlorid-Lösung gefüllt und weiter Gas entwickelt bis die Spritze, die mit dem Pluspol verbunden ist, vollständig gefüllt ist. Dann wird die Spritze vom Pluspol mit einem Finger verschlossen, aus der Lösung genommen, umgedreht und das Gas mit feuchtem Kaliumiodid-Stärke-Papier über der Spritzenöffnung auf Chlor getestet. Lehrerversuch Wasserstoff (freies Gas), Chlor (freies Gas)
Der Bau des Lithium-Ionen-Power-Packs Herstellung eines leistungsstarken Akkus mit Zinn als Anodenmaterial Wie in der Anleitung beschrieben und mit Skizzen und Abbildungen im Detail dargestellt wird das System aus zurecht geschnittenen Zinnfolien- und Graphitfolienstreifen auf einem lagen Filterpaierstreifen ziehharmonikaartig zusammengefaltet, so dass es in die vorgesehene Dose passt. Der Dosendeckel mit den zwei Polen wird gemäß Beschreibung präpariert. Man befüllt mit der Elektrolytlösung, die durch Einrühren von Lithiumperchlorat in ein Gemisches aus Propylencarbonat und Dimethylcarbonat angesetzt wird. Nach der Befüllung wird der Akku wie beschrieben aufgeladen und als Spannungsquelle benutzt. Lehrer-/ Schülerversuch Lithiumperchlorat, Propylencarbonat, Dimethylcarbonat
Elektrochromes Umfärben einer Emeraldin-Salzschicht in Schwefelsäure Farbreaktion von Polyanilin auf FTO-Glas Wie beschrieben und in der Skizze dargestellt befestigt man zwei mit Aceton gespülte Graphitfolien-Streifen und das mit Polyanilin beschichtete FTO-Glas in der flachen Plastikdose, die mit Schwefelsäure befüllt ist. Man verschaltet die Elektroden, wobei zunächst die Graphitfolie als Anode agiert, mittels Krokodilklemmen, Kabeln und Gleichspannungsquelle in einen Stromkreis und färbt die FTO-Platte durch Anlegen einer 1,2 V-Spannung von grün (Emeraldin-Salz) über gelb auf farblos um. Dann schaltet man die FTO-Platte als Anode und elektrolysiert noch einmal mit 1,2 V, bis die Platte nach Gelb- und Grünfärbung einen blau/ violetten Farbton (Pemigranilin-Salz) zeigt. Lehrer-/ Schülerversuch SII Aceton
CfL: Zerlegen und Untersuchen einer vollständig entleerten Zink-Silberoxid-Knopfzelle Reaktionsprodukte bei der Entladung einer Zink-Silberoxid-Batterie Vorbereitung: Zunächst muss eine Knopfzelle vollständig entleert werden. Dies sollte nicht durch einen Kurzschluss passieren, da in diesem Fall kein vollständiger Stoffumsatz stattfindet. Es bietet sich an, einen Kleinmotor oder eine sehr empfindliche Glühlampe zu betreiben, bis der Stromfluss auf ein Minimum absinkt. Wird das Entladen über mehrere Tage betrieben, so sind anschließend die Reaktionsprodukte sehr gut zu erkennen. Durchführung: Man öffnet die entladene Knopfzelle wie in Versuch "CfL: Zerlegen und Untersuchen einer frischen und unbenutzten Knopfzelle auf Zink-Silberoxid-Basis" beschrieben. Die beiden ineinander gestülpten Becher werden getrennt und die Membran wird entfernt. Die in der Batterie enthaltene Flüssigkeit wird mit Unitest-Papier auf ihren pH-Wert getestet. Lehrer-/ Schülerversuch Zinkoxid
CfL: Zerlegen und Untersuchen einer entleerten Zink-Luft-Knopfzelle Reaktionsprodukte bei der Entladung einer Zink-Luft-Batterie Vorbereitung: Zunächst muss eine Knopfzelle vollständig entleert werden. Dies sollte nicht durch einen Kurzschluss passieren, da in diesem Fall kein vollständiger Stoffumsatz stattfindet. Es bietet sich an, einen Kleinmotor oder eine sehr empfindliche Glühlampe zu betreiben, bis der Stromfluss auf ein Minimum absinkt. Wird das Entladen über mehrere Tage betrieben, so sind anschließend die Reaktionsprodukte sehr gut zu erkennen. Durchführung: Zunächst entfernt man den Aufkleber, der sich auf dem Pluspol befindet. Wie schon bei der Zink-Silberoxid-Knopfzelle wird der Metallmantel der Zelle an der Überlappung aufgekniffen und die beiden ineinander gepackten Becher werden voneinander getrennt. Die Flüssigkeit, die beim Öffnen der Zelle austritt, prüft man mit Unitest-Papier auf ihren pH-Wert. Lehrer-/ Schülerversuch
CfL: Nachweis von Zink und Silberoxid Qualitative Bestimmung der Inhaltsstoffe einer Zink-Silberoxid-Batterie Vorbereitung: Zunächst ist es notwendig, Zinkpulver und Silberoxid (aus Versuch "CfL: Zerlegen und Untersuchen einer frischen und unbenutzten Knopfzelle auf Zink-Silberoxid-Basis" zu trocknen. Dazu wird die geöffnete Knopfzelle einen Tag lang an einen warmen, trockenen Ort gelegt. Nachdem die Stoffe angetrocknet sind, kann man sie mit einem spitzen Spatel aus dem Metallbecher entfernen und ggf. mörsern. Man lässt sie anschließend auf dem Filterpapier vollständig trocknen. Durchführung: Das trockene Zinkpulver wird auf die Magnesia-Rinne oder in den Verbrennungslöffel gegeben und in der oxidierenden Zone des Brenners erhitzt. Getrocknetes Silberoxid füllt man in das Reagenzglas, erhitzt dieses und prüft mit dem glimmenden Span auf Sauerstoff. Lehrer-/ Schülerversuch Zink (Pulver, phlegmatisiert), Silber(I)-oxid

Seite 1 von 9, zeige 20 Einträge von insgesamt 179 , beginnend mit Eintrag 1, endend mit 20

< zurück123456789
Anzeige: