Experimente der Kategorie "Elektrochemie"
Name | Kurzbeschreibung | Beschreibung | Typ | Gefahrstoffe | |
---|---|---|---|---|---|
Silberfraktale | Elektrolytische Abscheidung von elementarem Silber | Variante Petrischale: Man füllt stark verd. Silbernitrat-Lösung in eine Petrischale. Zwei Silberdrähte werden mit Abstand in die Lösung eingebracht und mit einer 9-V-Spannungsquelle verbunden. Variante Objektträger: Zur mikroskopischen Beobachtung der Fraktalbildung wird ein Objektträger mit Vertiefung mit wenigen Tropfen Silbernitrat-Lsg. befüllt. Zwei Silberdrähte, verbunden mit einer 9-V-Spannungsquelle, tauchen in die Lösung, die Drahtspitzen haben etwas Abstand. | Lehrer-/ Schülerversuch | Silbernitrat-Lösung (verdünnt, w=____% (<5%)) | |
Silber im Nano-Format | Elektrolytische Darstellung von Silber-Nanopartikeln | Zwei Bechergläser werden hälftig mit stark verdünnter Silbernitrat-Lösung befüllt. In eines der Bechergläser montiert man mittels Krokodilklemmen zwei Silberdrähte, die tief in die Lösung eintauchen. (Die andere Portion dient als Vergleichslösung.) Die Silberdrähte werden über Kabel mit einer 9-V-Batterie verbunden. Man elektrolysiert unter Wechselspannung: Im 5-sec-Rhythmus wird 20mal die Polung batterieseitig getauscht. Anschließend werden zur Beobachtung des Tyndall-Effekts an einem dunklen Ort beide Gefäße mit einem Laserpointer seitlich durchstrahlt. | Lehrer-/ Schülerversuch | Silbernitrat-Lösung (verdünnt, w=____% (<5%)) | |
Kupfer(II)-chlorid-Elektrolyse mit Kohleelektroden | Nachweis der Elektrolyseprodukte | U-Rohr-Versuch: In eine ca. halbmolare Kupfer(II)-chlorid-Lösung tauchen in jeden Schenkel des U-Rohres jeweils eine Kohleelektrode. Sie sind mit einer 10V-Gleichspannungsquelle verbunden. Man elektrolysiert 5min lang mit 100..200mA Stromstärke. Danach überprüft man die Gasphase auf der Anodenseite mit angefeuchtetem Kaliumiodid-Stärke-Papier. Auf der Kathodenseite lässt sich von der herausgezogenen Elektrode ein Kupferbelag mit konz. Salpetersäure abwaschen. Die so gewonnene Lösung wird mit Ammoniak versetzt. | Lehrer-/ Schülerversuch | Kupfer(II)-chlorid-Lösung (verdünnt, w=_____ % (<25%)), Chlor (freies Gas), Salpetersäure (konz. w=____% (20-70%)), Ammoniak-Lösung (konz. w=_____ % (10-25%)) | |
Daniell-Element in Funktion | Halbzellen Zink/ Zinksalz und Kupfer/ Kupfersalz reagieren elektrochemisch miteinander. | In gleicher Füllhöhe gibt man in eine WH-Flasche Zinksulfat-Lösung und stellt einen zurecht gebogenen Zinkdraht hinein, in die andere Flasche gibt man Kupfer(II)-sulfat-Lösung und stellt entsprechend einen Kupferdraht hinein. Eine Baumwollkordel oder ein Docht, der mit den Enden in die Flüssigkeiten eintaucht, verbindet die beiden Halbzellen. Er wird mittels Pipette mit Kaliumchlorid-Lösung getränkt. Man misst die entstandene Zellspannung. | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Lösung (verd., (w: <25%)), Zinksulfat-Lösung (verdünnt, (1%<w<2,5%)) | |
Daniell-Element mit zwei Halbzellen | Elektrochemie mit Zink und Kupfer in ihren jeweiligen Salz-Lösungen | Zwei Bechergläser, das eine mit 1-molarer Kupfer(II)-sulfat-Lösung, das andere mit Zink(II)-sulfat-Lösung, werden gemäß Beschreibung mit Elektrodenhaltern bestückt, die die jeweiligen Metallplatten tragen. Die beiden Buchsen werden über Kabel mit einem Propellermotor verbunden. Ein mit Kaliumnitrat-Lösung getränkter Papierstreifen dient als Salzbrücke zwischen den Bechergläsern. | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Pentahydrat, Zinksulfat-Heptahydrat, Kaliumnitrat | |
Leerlaufspannung verschiedener galvanischer Elemente | Messreihe mit fünf Halbzellen | Jeweils einmolare Kupfer(II)-sulfat-, Zinksulfat- und Eisen(II)-sulfat-Lösungen sowie eine Kaliumiodid-Lösung und Bromwasser werden in Bechergläsern bereit gestellt. Die ersten drei Gefäße werden gemäß Anleitung mit den jeweiligen Plattenelektroden Kupfer, Zink und Eisen bestückt, die anderen beiden mit einer Graphitelektrode. Über Salzbrücken aus Filterpapierstreifen, die mit Kaliumnitrat-Lösung getränkt sind, werden nacheinander immer zwei Halbzellen kombiniert. Man misst die Leerlaufspannungen. | Lehrer-/ Schülerversuch | Eisen(II)-sulfat-Heptahydrat, Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Kaliumnitrat, Bromwasser (verd. (w: 1-5%)) | |
Korrosion von Kupfer in einer Chlorid-Ionen-Lösung | Elektrochemische Prozesse bei der Kupferkorrosion | In 2 Vorversuchen wird in Porzellanschalen das Verhalten von sauberen Kupferblechstücken im 1-molarer Natriumchlorid-Lösung und in Meerwasser beobachtet. Beim Elektrolyse-Experiment wird gemäß Anleitung und Abbildung ein Tonzylinder bzw. ein Blumentopf mit Plastikrohr mit Natriumperoxodisulfat-Lösung befüllt und mit einer Kohleelektrode versehen. Er wird in ein Becherglas gestellt, das mit Natriumchlorid-Lösung gefüllt und mit einer Kupferblechelektrode ausgestattet ist. Dieses Becherglas ist über eine Salzbrücke mit einem zweiten Becherglas verbunden, in dem eine Silber-/ Silberchlorid-Elektrode in einer Kaliumchlorid-Lösung steht. Für die elektrochemische Untersuchung werden die Elektroden über Spannungsmessgeräte miteinander verschaltet. | Lehrer-/ Schülerversuch | Natriumperoxodisulfat | |
Standardpotentiale galvanischer Elemente | Kupfer-, Zink- und Eisen-Halbzellen kombiniert mit einer Standard-Wasserstoff-Halbzelle | Vorbereitend stellt man 1-molare Lösungen von Kupfer(II)-, Zink(II)- und Eisen(II)-sulfat her. In Bechergläsern werden die drei Ionenlösungen nach Anleitung mit den entsprechenden Plattenelektroden aus Kupfer, Zink bzw. Eisen bestückt. Für die Standard-Wasserstoff-Halbzelle wird ein Stück Magnesiumband in eine 1-molare-Salzsäure-Lösung gegeben, die mit einer Platinelektrode bestückt ist. Ein mit Kaliumnitrat-Lösung getränkter Filterpapierstreifen verbindet jeweils eine Halbzelle mit der Standard-Wasserstoff-Halbzelle. | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Pentahydrat, Zinksulfat-Heptahydrat, Eisen(II)-sulfat-Heptahydrat, Kaliumnitrat, Salzsäure (Maßlösung c= 1 mol/L) | |
Konzentrationselemente I | Potentialgefälle zwischen Kupfer(II)-sulfat-Lösungen unterschiedlicher Konzentration | Vorbereitend werden eine 1-molare sowie eine stark verdünnte Kupfer(II)-sulfat-Lösung. Mit gesättigter Kaliumnitrat-Lösung wird ein Filterpapierstreifen getränkt. Variante A: Gemäß Anleitung werden zwei Bechergläser mit den Kupferionen-Lösungen befüllt und mit Kupfer-Elektroden ausgestattet. Nach der Verbindung der beiden Gläser mit dem Filterpapierstreifen als Stromschlüssel misst man die Leerlaufspannung der galvanischen Zelle. Variante B: Man stellt aus 1-molarer Kupfer(II)-sulfat-Lösung und Kupferelektroden zwei gleiche Halbzellen zusammen, verbindet sie mit Stromschlüssel und legt das Spannungsmessgerät an. Dann wird Ammoniak-Lösung (alternativ Natronlauge) hinzu pipettiert. als | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Pentahydrat, Ammoniak-Lösung (verd. w=____% (5-10%)), Natronlauge (w=____% (>5%)), Kaliumnitrat | |
Konzentrationselemente II | Potentialgefälle zwischen Silbernitrat-Lösungen unterschiedlicher Konzentration | Vorbereitend werden in Bechergläsern durch Lösen eine 0,1-molare und durch Verdünnen eine 0,01-molare, eine 0,001-molare und eine 0,0001-molare Silbernitrat-Lösung bereit gestellt. Jeweils mit Silberelektroden bestückt, werden die Bechergläser mit dem 0,1-molaren Ansatz als galvanische Zellen kombiniert, wobei ein mit Kaliumnitrat-Lösung getränkter Filterpapierstreifen als Stromschlüssel dient. Man misst jeweils die Leerlaufspannung. | Lehrer-/ Schülerversuch | Silbernitrat, Kaliumnitrat | |
Konzentrationselemente III | Potentialgefälle bei Kupfer-Halbzellen unterschiedlicher Kupferionen-Konzentration | Vorbereitend werden in Bechergläsern durch Lösen eine 0,1-molare und durch Verdünnen eine 0,01-molare, eine 0,001-molare und eine 0,0001-molare Kupfer(II)-sulfat-Lösung bereit gestellt. Jeweils mit Kupferelektroden bestückt, werden die Bechergläser mit dem 0,1-molaren Ansatz als galvanische Zellen kombiniert, wobei ein mit Kaliumnitrat-Lösung getränkter Filterpapierstreifen als Stromschlüssel dient. Man misst jeweils die Leerlaufspannung. | Lehrer-/ Schülerversuch | Kupfer(II)-sulfat-Pentahydrat, Kaliumnitrat | |
Elektrolyse einer Zinkiodid-Lösung | Laden und Entladen einer galvanischen Zelle | Ein Becherglas wird mit Zinkiodid-Lösung befüllt und mit 2 Graphitelektroden ausgestattet. Man legt eine 10-V-Gleichspannung an und elektrolysiert einige Minuten lang. Anschließend wird die Spannungsquelle entfernt, und man schließt einen Motor mit Propeller an. Alternative: Versuchsansatz im U-Rohr mit Fritte. | Lehrer-/ Schülerversuch | Zinkiodid | |
Elektrolyse Salzsäure | Stromfluss bei Erreichen der Zersetzungsspannung | Ein Becherglas mit Salzsäure wird mit zwei Platinelektroden ausgestattet, die über ein Multimeter mit einer Gleichspannungsquelle verbunden werden. Stufenweise wird gemäß Anleitung die angelegte Spannung erhöht und der Stromfluss jeweils kontrolliert. Bei einsetzendem Stromfluss wird die Elektrolyse beendet. Die Zersetzungsspannung wird direkt mit dem Multimeter gemessen. | Lehrer-/ Schülerversuch | Salzsäure (Maßlösung c= 1 mol/L) | |
Überspannung | Tatsächliche Zersetzungspannung vs. berechnete Leerlaufspanung | Ein Becherglas wird mit 0,5-molarer Schwefelsäure bzw. 1-molarer Natronlauge befüllt und mit zwei Platinelektroden ausgestattet. Es wird eine Gleichspannung angelegt, die unter Messung der Stromstärke gemäß Anleitung stufenweise bis zur einsetzenden elektrolytischen Zersetzungsreaktion hochgefahren wird. | Lehrer-/ Schülerversuch | Schwefelsäure (Maßlösung c= 0,5 mol/L), Natronlauge (Maßlösung c= 1 mol/L) | |
Reihenfolge der Ionenentladung | Vorgänge bei der Elektrolyse einer Natriumchlorid-Lösung | Vorbereitend wird eine 1-molare Natriumchlorid-Lösung zubereitet und ein mit gesättigter Kaliumnitrat-Lösung getränkter Filterpapierstreifen bereit gestellt. Zwei Bechergläser mit der vorbereiteten Natriumchlorid-Lösung werden mit jeweils einer Graphit-Elektrode ausgestattet und durch den Filterpapierstreifen als Ionenbrücke verbunden. Man legt gemäß Anleitung eine Gleichspannung an und beobachtet. | Lehrer-/ Schülerversuch | Kaliumnitrat | |
LECLANCHÉ-Element | Primärelement aus klassischen Batterien | Ein Tonzylinder wird mit einem Graphit-Braunstein-Gemisch (1:1) befüllt und mittig in ein Becherglas gestellt. Das Becherglas wird gemäß Anleitung mit gesättigter Ammoniumchlorid-Lösung aufgefüllt. Man positioniert den Elektrodenhalter mit der Graphit und der Zinkelektrode wie angegeben in das Becherglas und misst die anstehende Spannung. Alternativ: Anstelle des Tonzylinders lässt sich auch eine Extraktionshülse oder ein vielfach durchlöcherter med. Spritzenzylinder verwenden. | Lehrer-/ Schülerversuch | Ammoniumchlorid, Mangan(IV)-oxid | |
Zitronenbatterie | Primärelement mit Kupfer- und Zink-Elektroden | Vorbereitend wird die Zitrone gemäß Anleitung mit zwei breiten Schlitzen in der Schale versehen. Man steckt eine Kupfer- und eine Zink-Elektrode in die Schlitze, ohne dass sich diese berühren. Nach Anschließen der Kabel an die Elektroden wird die Spannung gemessen und evtl. ein Kleinmotor mit Propeller angeschlossen. | Lehrer-/ Schülerversuch | ||
Zink-Silber-Akkumulator | Lade- und Entladevorgang an einer galvanischen Zelle | Ein Becherglas wird mit verd. Kaliumhydroxid-Lösung befüllt und mit einem Elektrodenhalter versehen, der eine Zink- und eine Silber-Elektrode trägt. Gemäß Anleitung wird die Zelle zunächst über eine Netzgerät aufgeladen, anschließend wird das Netzteil durch einen Kleinmotor mit Propeller ausgetauscht. | Lehrer-/ Schülerversuch | Kalilauge (konz. w=____% (5-25%)) | |
Energie mit Wodka und Korn | Bau und Betrieb einer Ethanol/Luft-Brennstoffzelle | Gemäß Anleitung werden zwei Bechergläser mit verdünnter Natron- oder Kalilauge gefüllt und mit einem laugegetränkten Filterpapierstreifen als Ionenbrücke verbunden. Man taucht zwei saubere Platinelektroden ein und verschaltet sie mit einem Messverstärker, der den Betrieb eines kleinen Motors ermöglicht. In eines der Bechergläser gibt man nun tropfenweise Wodka oder Korn (als Ethanol-Lösung). | Lehrer-/ Schülerversuch | Natronlauge (konz. w= 32%), Kalilauge (konz. w=40%) | |
Die Umkehrzelle (Demo) | Konzentrationsabhängigkeit der elektrochemischen Reaktion in Cu-Halbzellen | Vorbereitend werden ein gesättigte sowie eine 0,05-molare und eine 0,005-molare Kupfer(II)-nitrat-Lösung nach Anleitung hergestellt. Die beiden Maßlösungen werden mit Kaliumnitrat in vorgegebener Konzentration angereichert. Man gibt die Maßlösungen in zwei Bechergläser, verbindet diese mit einem getränkten Filterpapierstreifen als Stromschlüssel und stellt zwei mit Salzsäure gut gereinigte Kupferbleche als Elektroden hinein, die mit dem "Messmotor" verschaltet sind. Man beobachtet den anfänglichen Drehsinn des Rotors und die Veränderungen bei langsamer Zugabe von gesättigter Kupfer(II)-nitrat-Lösung zu der Halbzelle mit der nur 0,005-molaren Lösung. | Lehrer-/ Schülerversuch | Kupfer(II)-nitrat-Trihydrat, Salzsäure (Maßlösung c= 1 mol/L) |
Seite 2 von 9, zeige 20 Einträge von insgesamt 179 , beginnend mit Eintrag 21, endend mit 40