Experimente der Kategorie "Elektrochemie"

NameKurzbeschreibungBeschreibungTypGefahrstoffe
Bleiakkumulator (Modell) Redoxreaktionen beim Laden und Entladen Zwei Bleiplatten bzw. -bleche tauchen in einem Gefäß in etwa 30%ige Schwefelsäure. An der Oberfläche entsteht sofort eine Bleisulfat-Schicht. Die Platten sind für den Ladevorgang mit einer Gleichstromquelle (4,5 V) verbunden, zum Entladen mit einem Glühlämpchen oder Motor/ Rotor. Beim etwa 3-5-minütigen Ladevorgang wird das Bleisulfat zu Blei(IV)-oxid bzw. zu elementarem Blei umgesetzt. Lehrerversuch / nicht für Lehrerinnen i.g.A. Blei(II)-sulfat, Blei(IV)-oxid, Schwefelsäure (konz. w: >15%)
CfL: Modellversuch zum Blei-Akkumulator Chemische Reaktionen mit Blei- und Blei(IV)-oxid-Halbzellen 1. Ein Becherglas wird etwa zur Hälfte mit Schwefelsäure gefüllt und die zuvor mit einem Scheuerschwamm gründlich gereinigten Bleibleche hineingestellt. Man verbindet die Bleibleche mit einer Spannungsquelle und regelt diese auf 4 – 6 V ein. Die Anschlüsse der Elektroden an den Polen der Spannungsquelle werden notiert und die Bleche genau beobachtet. 2. Sobald sich die Oberfläche der Bleche sichtbar verändert, wird die Elektrolyse abgebrochen (spätestens nach 2 Minuten) und die Spannungsquelle aus dem Stromkreis entfernt. Man misst die Spannung zwischen beiden Blechen und ermittelt die Stromflussrichtung anhand der Anschlüsse des Voltmeters und des angezeigten Spannungsvorzeichens. Anschließend schaltet man eine Glühlampe in den Stromkreis. Lehrerversuch / nicht für Lehrerinnen i.g.A. Schwefelsäure (konz. w: >15%), Blei (massiv, Stücke, Blech), Blei(IV)-oxid, Wasserstoff (freies Gas)
Biochemische Brennstoffzelle mit Glucose-Oxidase Stromproduktion aus elektrochemischer Reaktion von Glucose mit Wasserstoffperoxid Man zeigt in zwei Vorversuchen ('Blue Bottle') die Eignung von Methylenblau als Redox-Mediator: Zum einen die Wirkung von Glucose auf alkalische Methylenblau-Lösung, zum anderen die Wirkung von Glucose-Oxidase auf eine pH7-gepufferte Methylenblau-Lösung. Im Hauptversuch befüllt man die vorgesehene Brennstoffzelle entsprechend der ausführlichen Anleitung kathodenseitig mit salzsaurer Wasserstoffperoxid-Lösung und anodenseitig mit der zubereiteten gepufferten Glucose-Oxidase-Methylenblau-Lösung, die mit einer Glucose-Methylenblau-Lösung vermischt wurde. Als Elektroden kommen ein Graphitstab und ein versilberte Kohlestab, alternativ ein Titan-Strecknetz zum Einsatz. Lehrer-/ Schülerversuch SII Methylenblau, Natriumhydroxid (Plätzchen), Wasserstoffperoxid-Lösung (wässrig, (w: 8-35%)), Salzsäure (verd. w=____% (<10%)), Silbernitrat-Lösung (verdünnt, w=____% (<5%))
Biochemische Brennstoffzelle mit Trockenhefe Stromproduktion aus elektrochemischer Reaktion von Glucose mit Wasserstoffperoxid Vorbereitend setzt man nach Anleitung eine gepufferte Lösung von 2-Hydroxy-1,4-naphthochinon an. Man zeigt in einem Vorversuch die Reaktion einer alkalische Glucose-Lösung mit gepufferter HNQ-Lösung. Im Hauptversuch befüllt man die vorgesehene Brennstoffzelle entsprechend der ausführlichen Anleitung kathodenseitig mit salzsaurer Wasserstoffperoxid-Lösung und anodenseitig mit der zubereiteten Suspension von Trockenhefe in gepufferter HNQ-Lösung, die mit einer Glucose-HNQ-Lösung vermischt wurde. Als Elektroden kommen ein Graphitstab und ein versilberte Kohlestab, alternativ ein Titan-Strecknetz zum Einsatz. Lehrer-/ Schülerversuch SII Natriumhydroxid (Plätzchen), Wasserstoffperoxid-Lösung (wässrig, (w: 8-35%)), Salzsäure (verd. w=____% (<10%)), Silbernitrat-Lösung (verdünnt, w=____% (<5%)), 2-Hydroxy-1,4-naphthochinon
Elektrochromes Umfärben einer Emeraldin-Salzschicht in Schwefelsäure Farbreaktion von Polyanilin auf FTO-Glas Wie beschrieben und in der Skizze dargestellt befestigt man zwei mit Aceton gespülte Graphitfolien-Streifen und das mit Polyanilin beschichtete FTO-Glas in der flachen Plastikdose, die mit Schwefelsäure befüllt ist. Man verschaltet die Elektroden, wobei zunächst die Graphitfolie als Anode agiert, mittels Krokodilklemmen, Kabeln und Gleichspannungsquelle in einen Stromkreis und färbt die FTO-Platte durch Anlegen einer 1,2 V-Spannung von grün (Emeraldin-Salz) über gelb auf farblos um. Dann schaltet man die FTO-Platte als Anode und elektrolysiert noch einmal mit 1,2 V, bis die Platte nach Gelb- und Grünfärbung einen blau/ violetten Farbton (Pemigranilin-Salz) zeigt. Lehrer-/ Schülerversuch SII Aceton
Elektrolytische Abscheidung von Polyanilin (PANI) auf ein FTO-Glas Herstellung von organischem polyelektrochromem Material Vorbereitend wird nach Angaben eine schwefelsaure Anilinlösung hergestellt. Man hängt gemäß Beschreibung ein FTO-Glas und eine Graphitfolie in das vorgesehene Plastikgefäß mit der Elektrolytlösung ein. Beide Elektrodenmaterialien wurden zuvor gründlich mit Aceton gespült. Man verschaltet die Elektroden mittels Krokodilklemmen, Kabeln und Gleichspannungsquelle in einen Stromkreis und lädt das System 90 sec lang mit 3 V. Danach wird das mit dem Emeraldin-Salz beschichtete FTO-Glas entnommen, in ein Wasserbad getaucht und auf einem saugfähigen Tuch getrocknet. Lehrer-/ Schülerversuch SII Aceton, Methanol, Anilin, Schwefelsäure (Maßlösung c= 0,5 mol/L)
Eine einfache Spannungsquelle Elektrochemisches Element aus Eisen-Aluminium Ein Eisennnagel und ein Stück Alu-Folie werden mit Abstand zueinander in etwas Wasser gegeben, dem Kochsalz und wenig Phenolphthalein-Lösung zugesetzt wird. Die elektrische Spannung an den Metallstücken wird gemessen. Lehrer-/ Schülerversuch Phenolphthalein-Lösung (w<=0,9%; Lsm.: Ethanol 90 %ig)
Zink-Luft-Batterie Eine Zink/Kohle-Zelle erzeugt Strom. Ein Zink- und ein Kohlestab tauchen in halbkonzentrierte Kalilauge. Die Spannung zwischen den Polen wird gemessen. Lehrer-/ Schülerversuch Kalilauge (konz. w=____% (5-25%))
Reduktion von Kupfer(II)-Ionen Abscheidung von Kupfer aus einer Kupferchlorid-Lösung Reagenzglasversuch: Aus einer Kupferchlorid-Lösung wird mittels Eisen(wolle) (alternativ: Alufolie) metallisches Kupfer abgeschieden. Lehrer-/ Schülerversuch Kupfer(II)-chlorid-Dihydrat
Galvanische Zellen Spannungsmessung an div. Metall-/Metallionen-Zellen Reihenuntersuchung: Blechstücke von Eisen, Kupfer, Silber, Zinn und Zink werden jeweils in die Lösung eines entsprechenden Salzes gehalten. Die Spannung zwischen diesen Halbzellen wird nacheinander gemessen. Lehrer-/ Schülerversuch Eisen(II)-sulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat, Silbernitrat-Lösung (verdünnt, w=____% (<5%)), Zinkchlorid, Zinn(II)-chlorid-Dihydrat
Oxidation von Zink mit Kupferkontakt Wasserstofffreisetzung bei der Zinkoxidation in Schwefelsäure Ein Zink- und ein Kupferstab werden zunächst ohne Berührung in ein Gefäß mit Schwefelsäure gestellt. Die zu beobachtende Wasserstoffentwicklung am Zink wird stärker und verlagert sich auf den Kupferstab, wenn dieser das Zink berührt. Lehrer-/ Schülerversuch Schwefelsäure (konz. w: >15%), Wasserstoff (freies Gas)
Zink-Iod-Batterie Zinkiodid-Lösung wird zur galvanischen Zelle. Mittels Propellergenerator wird eine Zinkiodid-Lösung kurzzeitig elektrolysiert. Das an den Kohleelektroden entstehende Zink und das Iod machen den Aufbau zu einer galvanischen Zelle. Alternativ kann man Zinkchlorid oder Zinkbromid zur Reaktion bringen. Lehrer-/ Schülerversuch Zinkiodid, Zinkchlorid, Zinkbromid
DANIELL-Element als Energiespeicher Galvanische Zelle mit Kupfer und Zink In ein Becherglas taucht ein breiter Kupferblechstreifen sowie ein schlanker Tonzylinder als Diaphragma, der mit Zinksulfat-Lösung gefüllt ist. Darin steht ein Zinkstab. Zink und Kupfer werden über Krokodilklemmen und Kabel mit einem kleinen Gleichstrommotor, der für geringe Stromstärken geeignet ist, verbunden. Lehrer-/ Schülerversuch Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat
Potentialdifferenz zwischen Kupfer und Zink Messung mit galvanischen Halbzellen Ein U-Rohr mit Fritte wird auf der einen Seite mit einer genau 1-molaren Kupfer(II)-sulfat-Lösung, auf der anderen Seite mit einer 1-molaren Zinksulfat-Lösung auf gleiche Füllhöhe befüllt. Ein blanker Kupferstab wird in die Kupfersalz-Lösung und eine blanker Zinkstab in die Zinksalzlösung gestellt. Man verbindet die Metalle mit einem Voltmeter (0-3 V). Lehrer-/ Schülerversuch Zinksulfat-Heptahydrat, Kupfer(II)-sulfat-Pentahydrat
Zink und Iod freisetzen Elektrolyse einer Zinkiodid-Lösung U-Rohr-Versuch: In die Krümmung bringt man als Seitentrenner einen Bausch Glaswolle oder Watte ein. In beide Schenkel wird eine konz. Zinkiodid-Lösung (alternativ: Zinkbromid-Lösung) gefüllt. Zwei Kohleelektroden werden - ca. 3 cm eintauchend - in die Lösung eingebracht und mit einer Gleichstromquelle verbunden. Man elektrolysiert bei ca. 10 V wenige Minuten lang. Lehrer-/ Schülerversuch Zinkiodid, Zinkbromid, Iod
Ionen als Wanderer Bewegung von Chromat- und Kupfer(II)-Ionen Ein längeres Stück Chromatographie-Papier wird mit Kaliumchlorid-Lösung durchfeuchtet. Dann legt man einen Wollfaden, der mit Kupfersulfat-, Kaliumchromat-Lösung und Ammoniakwasser getränkt ist, mittig auf. An die kurzen Enden des Papiers legt man einen Kupferblechstreifen und daran wiederum für ca. 10 min eine Gleichspannung von ca. 20 V. Die farbigen Ionen setzen sich sichtlich in Bewegung. Lehrer-/ Schülerversuch Kaliumchromat, Kaliumpermanganat, Ammoniak-Lösung (verd. w=____% (5-10%))
Leclanché im Teelichtbecher Ein galvanisches Aluminium-Braunstein-Element Einem Gemisch von Ammoniumchlorid und Braunstein (2 : 1) setzt man etwas Stärke und Graphitpulver zu. Man rührt daraus unter Zusatz von wenig Wasser einen zähen Brei. Ein Teelichtbecher wird innen mit feuchtem Filterpapier ausgekleidet. Dann füllt man den Brei ein und steckt einen Graphitstab hinein. Die elektrische Spannung zwischen Graphitstab und Aluminiumbecher wird gemessen und evtl. genutzt (Motoranteib). Lehrer-/ Schülerversuch Ammoniumchlorid, Mangan(IV)-oxid
Elektrolyse einer Ammoniumchlorid-Lösung Gasförmige Reaktionsprodukte an beiden Elektroden In ein U-Rohr mit Diaphragma füllt man auf beiden Seiten eine etwa 10%ige Ammoniumchlorid-Lösung. Die Graphitelektroden in beiden Schenkeln des U-Rohres werden mit 10V Gleichspannung beschaltet. Bei der Untersuchung der gasförmigen Produkte nimmt man a) vorsichtig eine Geruchsprobe, prüft b) mit feuchtem Indikatorpapier, und macht c) einen Test mit Iod-Stärke-Papier. Mit dem Gas aus dem Kathodenraum macht man die Knallgasprobe. Beim Zusatz von Bromthymolblau-Lösung bzw. Ferroin-Lösung vor der Elektrolyse kommt es zu Veränderungen der jeweiligen Indikatorfarbe. Lehrer-/ Schülerversuch Ammoniumchlorid, Ferroin-Lösung, Wasserstoff (freies Gas), Chlor (freies Gas), Ammoniak (freies Gas)
Brennstoffzelle mit Glucose und Wasserstoffperoxid U-Rohr-Versuch zu einer elektrochemischen Energiequelle Vorbereitend mischt man Wasserstoffperoxid-Lösung unter Kühlung mit der vierfachen Menge 25%iger Kalilauge und hält diese Lösung kalt. In ein U-Rohr mit Fritte füllt man in jeweils einen Schenkel gleichzeitig die vorbereitete Wasserstoff-Lösung und eine frisch bereitete Lösung von 10g Glucose in 90ml Kalilauge (anstelle von Glucose kann auch Methanol oder Ethanol verwendet werden). Man taucht zwei Pt-Elektroden ein und misst die Spannung. Mit einem niederohmigen Motor kann man diese nutzbar machen. Lehrer-/ Schülerversuch Kalilauge (konz. w=____% (5-25%)), Wasserstoffperoxid-Lösung (wässrig, (w: 8-35%)), Methanol, Ethanol (ca. 96 %ig)
El Ox Al Elektrolytische Oxidation von Aluminium Man füllt ein Becherglas mit halbkonz. Schwefelsäure und hängt auf den gegenüberliegenden Seiten je ein längliches durch Knick zurecht geformtes Aluminiumblech auf den Rand des Glases. Über ein Strommessgerät werden die Bleche mit einer Gleichspannungsquelle 0..12V verbunden. Man regelt einen 2A-Gleichstrom ein und elektrolysiert ca. 15 min lang. Lehrer-/ Schülerversuch Schwefelsäure (konz. w: >15%)

Seite 1 von 9, zeige 20 Einträge von insgesamt 179 , beginnend mit Eintrag 1, endend mit 20

< zurück123456789